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This study discusses the detection of primary stress in continuous speech in Brazilian Portuguese 
(BP) using the West Point corpus (Morgan et al. 2008), and compressed representations of the 
speech signal (MFCCs, modelled by HMM-GMMs), as implemented in the toolkit Kaldi (Povey et 
al. 2011). An acoustic model of BP was trained using 5-fold cross validation and tested in three 
experimental conditions. Fairly high measures of accuracy were achieved in all conditions tested, 
yielding high MCCs and Kappas, indicating that the results are neither an effect of imbalanced 
data sets, nor of chance classification. These results, along with metrics obtained for vowels in 
pre- and posttonic positions indicate (i) that stress in BP is captured fairly well across speakers 
and genders by representations of the speech signal that encode spectral features and energy 
information but which do not directly compute duration or F0; (ii) as captured by the models 
used herein, there is an asymmetry between pretonic and posttonic vowels; (iii) in a preliminary 
analysis, Unstressed word tokens tend to cluster in prosodically weak positions of the utterance, 
raising the question of whether stress is consistently realized in these positions; (iv) pending 
further studies, there is an asymmetry between ultimate, penultimate and antepenultimate 
words as to how successfully stress is captured by the models used herein. 

Keywords: Primary word-level stress; Brazilian Portuguese; Continuous Speech; Automatic 
Speech Recognition; MFCCs; HMM-GMM

1. Introduction
This paper discusses a method for predicting1 primary word-level stress placement2 
in continuous speech in Brazilian Portuguese, using Hidden Markov-Gaussian Mixture 
Models (HMM-GMMs) of the signal as represented by Mel Frequency Cepstral Coefficients 
(MFCCs), and implemented in the Automatic Speech Recognition (ASR) toolkit Kaldi 
(Povey et al. 2011). Specifically, I describe the design and the training of an ASR acoustic 
model of Brazilian Portuguese (BP) which is then tested using three distinct experimental 
conditions with the purpose of predicting the locus of stressed and unstressed vowels in 
word tokens drawn from a corpus of continuous speech.

Primary word-level stress—hereafter interchangeably referred to as primary stress or 
simply stress—is a structural property of languages, which can be narrowly defined as the 
relative (acoustic) prominence of parts of a word, typically the syllable or a subpart of it 

 1 The term predict is used here in its machine learning sense, where it refers to the assignment of a symbolic 
label by a machine learning model, given certain features. In the present study, the process of fitting a 
model has access to the locus of citation stress. When the model is used to predict stress in a word token, it 
has access only to signal features, and it predicts the locus of stress from those features.

 2 Word-level stress is also called lexical stress in the literature. For the purposes of this study the term lexical 
stress is avoided, because the study is concerned with the locus of stress in word tokens, rather than with 
stress in an abstracted lexeme.
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(usually, the nucleus or the rhyme). Furthermore, as pointed out in Van der Hulst (2014), 
even though stress is often used as a cover term for the observable phonetic properties 
of accent—a term which itself refers to a lexical property of words and morphemes that 
marks the location of such observable correlates—we could expand our understanding 
of stress to be “… a cover term for correlates of accent (rather than just [phonetic] 
realizations of accent)”, in which case, “…we must also include phonological correlates…” 
(Van der Hulst 2014: 5). From that standpoint, primary word-level stress is central to the 
theoretical understanding of not only phonetic systems, but also of morpho-phonological 
ones. Within the scope of the present study, the latter considerations are relevant because, 
beyond building an acoustic model to be used to predict the locus of stress in token 
words from signal features, a more expansive question pertains to how, and to which 
extent, computational modeling of the signal side of word stress can inform phonetic and 
phonological theories of it.

As a linguistic phenomenon, word-level stress is key to a sizable number of language-
related processes, such as word segmentation, phonological rules, pitch accent placement, 
word perception, lexical retrieval, and contrasts between words in the mental lexicon, to 
name just a few. It follows that, given the overarching significance of stress in language, 
expanding our grasp of its phonetic and phonological dimensions and mechanisms also 
in continuous speech is imperative. Yet, undertaking experimental work using continuous 
speech requires processing ever larger amounts of data, thus rendering the use of 
computational modeling and machine learning algorithms desirable, and, ultimately, 
inescapable.

Dealing with relative prominence computationally can however, be a complex endeavor, 
partly due to the number of distinct acoustic correlates, or combinations thereof, that may 
express stress phonetically in a given language, and across languages—such as vowel 
duration, intensity, pitch (F0), and spectral features3—and in part because measuring 
the acoustic correlates of stress is a task that can be accomplished using different criteria 
(e.g., measuring the duration of the stressed vowel, of the stressed rhyme, or of the entire 
stressed syllable, measuring peak intensity or relative intensity, spectral balance, tilt or 
emphasis), which means that distinct ways of taking measurements may potentially provide 
different insights into the phonetic (and into the phonological) nature of stress. Moreover, 
it is largely unknown whether different measuring techniques may better represent a 
given correlate in different languages.4 Add to these observations intra- and inter-speaker 
variability in production and the amount of data involved when considering continuous 
speech, and it follows that, while a vast body of research has looked at word-level stress 
phonologically, and phonetically in isolated words and in short (mostly carrier-)phrases 
over the past decades, much less has been done to investigate its nature in continuous 
speech.5 

The method described herein aims at furthering the study and understanding of word-
level stress in continuous speech while sidestepping some of the complexity introduced by 
the multi-dimensionality and relational nature of prominence. This is achieved by focusing 
on attributes which are known to subsume spectral features such as formant locations 

 3 See, for example Gordon & Roettger (2017) for a comprehensive list of acoustic correlates that may express 
stress phonetically across languages.

 4 This is the case, for example, for the various operationalizations of loudness, such as intensity, spectral 
balance, spectral emphasis, and spectral tilt. There simply aren’t, thus far, enough studies that investigate 
which of these better represents loudness and its role in stress, within and across languages.

 5 Most of the work done with stress in continuous speech comes from other language-related fields, such 
as Automatic Speech Recognition, Cognitive Science, Neuroscience and Clinical Language Sciences. One 
notable exception are the works by Barbosa and colleagues for BP (Barbosa 2008; Barbosa, Eriksson, & 
Åkesson 2013).
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and energy information, using mathematical and computational machine-learning models 
that have relatively high dimensionality. 

The work is anchored on the hypothesis that the acoustic information from syllable 
nuclei alone is sufficient to distinguish between stressed and unstressed syllables in BP, 
and on the premise that stressed syllables are more carefully—or extremely—articulated 
than unstressed syllables, which potentially translates in systematic differences related 
to vowel quality (e.g., more extreme formant frequencies) and/or energy (traditionally 
captured in phonetics through various operationalizations of loudness, such as intensity, 
spectral tilt, spectral balance, and spectral emphasis, see Heldner (2001) for a discussion. 
Thus, the hypothesis is that compressed representations of the speech signal like Mel 
Frequency Cepstral Coefficients (MFCCs), which encode spectral and energy information, 
may be used to successfully capture the differences between stressed and unstressed 
vowels. Stressed vowels are therefore modeled in opposition to unstressed vowels of the 
same quality, using an HMM/GMM model of MFCCs extracted from the speech signal, 
as realized in the speech recognition toolkit Kaldi (Povey et al. 2011). Mathematically 
and computationally, the model parses stress in a token utterance by picking a stress 
configuration that results in maximal probabilistic weight for the speech token, in the 
generative probabilistic HMM/GMM model of phonetic realization.

The choice of Brazilian Portuguese6 is deliberate, because previous literature (e.g., 
Barbosa, Eriksson & Åkesson 2013; Major 1985; Massini 1991) reports duration to be 
the most consistent acoustic correlate of primary stress in the language. Since no time-
domain representation of the speech signal is used here because the acoustic model relies 
on compressed representations of spectral and energy features (again, as represented by 
MFCCs and modeled in HMM/GMMs), robust results would indicate that vowel quality 
and energy information can be predictors of the acoustic realization of stressed vowels in 
the language. It is actually not unheard of that languages where duration is shown to be a 
robust acoustic correlate of stress will also have correlates related to spectral features or 
energy that also reliably differentiate stressed vowels from unstressed ones: the influential 
work of Sluijter & van Heuven (1996), for example, showed that spectral balance can 
reliably distinguish stressed from unstressed vowels in Dutch. For Brazilian Portuguese, 
Barbosa, Eriksson & Åkesson (2013: 285) showed that posttonic vowels have significant 
lower values of mean spectral emphasis than pretonic and stressed vowels when the word 
is in a prominent position of the utterance.7

A few of the innovations found in the present work comprise the use of Automatic Speech 
Recognition (ASR), machine learning classifiers, and a top-down approach to a phonetic 
study. Less than a handful of phonetic studies made use of these tools to the present 
date, to the best of the author’s knowledge, with only Yuan & Liberman (2009) and Fox 
(2000) coming to mind, and the present work would be the first one to use classifiers to 
evaluate a supra-segmental feature of language, at least in the tradition of Linguistics. 
The study departs from most of the previous literature on ASR-based stress detection in 
other fields (e.g., Ananthakrishnan & Narayanan 2008; Barros & Weiss 2006; Chen et al. 

 6 While the stress systems of Brazilian Portuguese and of European Portuguese (EP) are mostly the same to 
the best of my knowledge (one exception appears to lie in acronyms, as described in Pereira 2007), it is not 
to be said that the acoustic model discussed herein can be used with EP speech data, since the present work 
hinges in part on a multi-pronunciation dictionary that characterizes the possible phonetic realizations of 
words, and these currently represent data in BP, but not in EP. For the present method to be successfully 
used with EP speech data, a new phonetic dictionary, representing the phonetic realizations of words in the 
language, would have to be built.

 7 The authors found that the mean spectral emphasis was higher for the informal interview speaking style 
than for phrase reading and word list reading speaking styles, and that, moreover, female speakers seem to 
privilege this parameter over F0 standard deviation.



Harmath-de Lemos: Detecting word-level stress in continuous speechArt. 3, page 4 of 43  

2004; Deshmukh & Verma 2009; Ferrer et al. 2015; Lai et al. 2006; Li et al. 2013, among 
others), in a number of ways: where a human usually referees the location of stress for 
each word token in the data set, I consider the ground truth to be the word’s citation stress 
as understood in phonological theory. Where previous work (e.g., Ananthakrishnan & 
Narayanan 2008; Barros & Weiss 2006; Chen et al. 2004; Deshmukh & Verma 2009; Ferrer 
et al. 2015; Lai et al. 2006; Li et al. 2013) resorted to measuring and normalizing one or 
several of the acoustic correlates of stress and to concatenate the normalized values to the 
MFCC vectors as additional coefficients, I rely solely on MFCCs of the speech signal, and 
no additional measurements were taken or used to train the acoustic model. While it is 
common to use data sets created specifically for each study, a Linguistic Data Consortium 
(LDC) corpus is used here, both for training and for testing purposes, with all word sizes 
(in number of syllables) in the corpus being used both during the training and during the 
testing tasks.

The data set used in the present study is the West Point Brazilian Portuguese Speech 
corpus (Morgan et al. 2008), a scripted corpus which contains 200 distinct prompt 
sentences,8 uttered by 128 speakers of BP, balanced for gender. A vocabulary of phones 
and a pronunciation dictionary were built specifically to be used in the study.9 The 
pronunciation dictionary includes multiple pronunciations for each word entry, as 
applicable,10 and mirrors the citation position of stress in each word entry by means of 
having a vowel labelled with a digit 1.

An acoustic model is trained using the pronunciation dictionary, the vocabulary of 
phones, and the West Point Corpus. The acoustic model is subsequently experimented 
with under three distinct conditions, each of which uses a different phonetic dictionary 
that restricts in a different way the choices the classifier has when predicting whether a 
vowel is stressed or unstressed for a given word token. To ensure that the model is not 
over-fitted, a 5-fold cross-validation was performed. Results were computed by looking at 
the forced alignment files that Kaldi generates based on the models it builds to represent 
the different phones found in the speech signal and were averaged over the five iterations 
of each experiment.

For the study, secondary stress (SS), reported to be a part of the phonology of BP 
(e.g., Major 1985), could be a potential confounding factor, as it could be the case that 
secondarily stressed vowels are more similar to primarily stressed vowels than they are 
to their unstressed counterparts (be it represented by MFCCs, duration, pitch, or other 
acoustic dimensions). Therefore, although the detection of secondary stress itself falls 
outside of the scope of this paper, SS is taken into account when processing the results.11

The remainder of the paper is organized as follows: in section 2, I give a brief review 
of primary stress assignment in Brazilian Portuguese and describe the structure of the 
West Point Brazilian Portuguese Speech corpus (Morgan et al. 2008), following that 
description with an abridged review of the MFCC, HMM-GMM approach to Automatic 
Speech Recognition and of the Kaldi toolkit (Povey et al. 2011). Section 3 contains a 
detailed explanation of the methodological aspects of this study, including descriptions 

 8 The corpus prompts also include one whole paragraph, not used in the present experiment.
 9 Both the vocabulary of phones and the pronunciation dictionary which were supplied by the LDC along 

with the West Point corpus are not suitable for the purposes of the work herein, because they did not 
encompass stress information, and because neither included the diphthongs and the full range of nasal 
vowels of Brazilian Portuguese.

 10 These multiple pronunciations reflect not only aspects of the phonology of the language, but also regionalisms 
and phonetic reduction common to continuous speech. The two latter aspects were considered upon audio 
and visual (spectrogram) inspection of the corpus in its entirety.

 11 Refer to the Background section (2) of this work for a short overview of secondary stress in BP, and to the 
Methodology section (3) for further discussion on how secondary stress is controlled for in the study.
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of the list of phones and the pronunciation dictionary. The three experimental conditions 
are also detailed in this section, as well as the way in which the data were retrieved from 
Kaldi’s alignment files, then processed and analyzed. Results are shown and discussed in 
section 4. Section 5 offers concluding remarks and refers to future directions.

2. Background
This section provides background on the three topics pertinent to the present study, 
namely, stress in Brazilian Portuguese, the West Point corpus (Morgan et al. 2008), and 
the mechanisms of Automatic Speech Recognition (ASR). 

The main aspects of the BP stress system are discussed first, followed by an outline of 
the structure of the West Point corpus (LDC2008S4–Morgan et al. 2008), and lastly, by an 
abridged overview of Automatic Speech Recognition systems in general, and of the ASR 
toolkit Kaldi (Povey et al. 2011) specifically.

2.1. Stress in Brazilian Portuguese
Phonetically, duration has been widely described as the most robust acoustic correlate 
of primary word-level stress in BP (e.g., Barbosa, Eriksson & Åkesson 2013; Major 1985; 
Massini 1991), while F0 and intensity are less reliable correlates. In Arantes, Lima & 
Barbosa (2012: 17) the authors mention that vowels in stressed syllables have higher 
mean spectral emphasis than those in other positions of the word, which could thus 
indicate that it is a correlate of primary word stress. In later work, Barbosa, Eriksson & 
Åkesson (2013) examined duration, F0 standard deviation and spectral emphasis values 
for three different speaking styles in BP and found out that duration reliably distinguishes 
stressed vowels from unstressed ones. The authors also found that posttonic vowels have 
significantly lower mean values of spectral emphasis when compared to the ones in 
pretonic and stressed syllables (also refer to Endnote 7). In addition, the authors report 
no difference in the mean duration of pretonic and posttonic vowels in their study. This 
latest finding could indicate that secondary stress might not be phonetically expressed 
through differences in vowel duration. With respect to spectral features, when looking at 
the vowel space of [i e a o u] in polysyllabic words that bear penultimate stress, Arantes 
(2011) found that such space is maximal for stressed vowels, gradually contracting in 
pretonic positions. 

As mentioned in the introductory section above, predictions about the locus of 
secondary stress (SS) fall outside of the scope of this inquiry. Nevertheless, within the 
realm of binary classification, secondary stress can potentially become a confounding 
factor, for example, if one contemplates the possibility that secondarily-stressed vowels, 
if or when phonetically realized, may be (acoustically) more similar to primarily-stressed 
vowels than to unstressed vowels. In this sense, secondary stress becomes relevant herein, 
warranting a very brief review of the literature.12 There are competing narratives about 
both the locus and the phonetic nature of SS in the language: for Major (1985), all pretonic 
syllables of a word in BP bear secondary stress and all posttonic syllables are unstressed. 
Collischonn (1994), on the other hand, proposed that secondary stress in BP is binary in 
nature and that the domain for its assignment is the portion of the word located to the 
left of the stressed syllable. Barbosa et al. (2004) presented evidence that suggests that 
secondary stress is equivalent to word-initial prominence only. De Moraes (2003) found 
out that secondary stress was perceived regularly in words with more than one pretonic 
syllable and that the locus of perceived SS admitted variation, but the author found no 
 12 Note that the review of the literature on secondary stress presented here is far from comprehensive, since 

it is meant to exemplify that there are competing accounts about both the acoustic nature and the locus of 
secondary stress in the language. 
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stable correlate for it (de Moraes 2003: 2066). In Arantes & Barbosa (2008; 2006), the 
authors propose that secondary stress is best described as phrase-initial prominence and 
investigate different correlates: duration and pitch accent excursion (2006), and F1 and 
spectral correlates (2008). Abaurre & Fernandes-Svartman (2008), analyzed text read by 
17 speakers and argued for the binary nature of SS in BP, noting that processes of vowel 
sandhi within the prosodic word, at the lexical boundary, tend to optimize such binary 
organization. This brief summary illustrates that there is no single answer to the question 
of where in a word SS falls in Brazilian Portuguese, nor to what its acoustic correlates are 
in the language. Since, as mentioned above, SS could become a potential confounder for 
the classifier, the matter needs to be addressed by methodological considerations, which 
will be discussed in the Methodology section below.

Phonologically,13 Portuguese is a bounded stress language, where stress is contrastive 
and predictable in so much as it is (mostly) restricted to the three right-most syllables 
of the word. Two possible violations to this constraint have been described: Pereira 
(2007), points out that the three-window constraint is violated when pronouns cliticize 
to verbs (example (3) below),14 and Lee (2007), notes that the epenthesis rule of BP, 
which inserts the front high vowel [i] to break-up disallowed consonant clusters as a 
means of recovering from phonotactic violations,15 may also generate words that display 
pre-antepenultimate stress (example (4) below). The near-minimal triplet of nouns (1) 
and the minimal triplet of words belonging to distinct lexical categories (2) shown below 
exemplify contrastiveness in the language.16,17

(1) pálido [ˈpa. li. dʊ]16 ‘pale’n
palito [pa. ˈli. tʊ] ‘tooth pick’n
paletó [pa. li. ˈtɔ]17 ‘suit’n

(2) sabiá [sa. bi. ˈa] ‘thrush’n
sabia [sa. ˈbi. ɐ] ‘to know’pst.ipfv.3sg.
sábia [ˈsa. bjɐ] ‘wise’F

(3) falávamos-te [fa. ˈla. vɐ. mos. te] ‘to speak’pst.ipfv.1pl.=2sg.acc.
cantávamo-vo-lo [kɐ.̃ ˈta. vɐ. mo. vo. lo]. ‘to sing’pst.ipfv.1pl=2pl.dat=3sg.acc.m.

 13 I thank an anonymous referee who suggested that the discussion about the phonology of stress in BP, 
which was a part of the original manuscript, be re-inserted in the final version of this paper. It is a bearing 
discussion insomuch as previous literature has shown that there is a correlation between phonological 
weight and duration (i.e., Broselow, Chen & Huffman 1997) and phonological weight and energy (i.e., 
Gordon 2002; 2006).

 14 Although the author does mention later on in the paper that the violation is apparent, because cliticization 
is a syntactic operation which happens post-lexical insertion of the word, and stress is marked in the 
lexicon. It is worth noting that the use of enclitics in Brazilian Portuguese is fairly restricted, mostly limited 
to a few types of discourse, such as Politics and Law, and to written language, and that proclitics are the 
more widely used forms in the language.

 15 Lee (2007) mentions the words técnico, */ˈtɛknikʊ/ → [ˈtɛ. ki . ni . kʊ], and rítmico, */ˈxitmiko/ → [ˈxi. ʧi. 
mi. kʊ].

 16 While these transcriptions follow the phonetic dictionary of the Portal da Língua Portuguesa (http://www.
portaldalinguaportuguesa.org), an anonymous referee pointed out that all posttonic vowels in BP, not only 
the word-final ones, could be transcribed as [ɪ ɐ ʊ].

 17 The pronunciation [pa. le. ̍ tɔ] is as listed in the phonetic dictionary found in the Portal da Língua Portuguesa. 
(http://www.portaldalinguaportuguesa.org) and may be still more common realization of the word paletó. 
The transcription used here is meant to show that the word may be pronounced in this form, which then 
generates a near-minimal pair with respect to stress placement.

http://www.portaldalinguaportuguesa.org
http://www.portaldalinguaportuguesa.org
http://www.portaldalinguaportuguesa.org
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(4) logarítmico logaRitmiko → [lo. ga. ˈɾi. ʧi. mi. kʊ] ‘logarithmic’adj.m.
étnico ɛtniko → [ˈɛ. ʧi. ni. kʊ] ‘ethnic’adj.m.
autóctone aʊtɔktone → [aʊ. ˈtɔ. ki. to. nɪ]18 ‘autochthonous’adj.

Besides indicating word contrast within and between lexical categories as exemplified 
above, primary stress also expresses inter-paradigmatic contrast in BP, marking 
grammatical tense in verbs, as illustrated by the 3rd person plural of the past perfective 
(penultimate stress) and of the future (ultimate stress), shown in (5).

(5) pensaram [pẽ. ˈsa. ɾɐʊ̃̃] ‘to think’pst.pfv.3pl.
pensarão [pẽ. sa. ˈɾɐʊ̃̃] ‘to think’fut.3pl.

Three generalizations about primary stress placement in Portuguese are broadly accepted: 
(i) antepenultimate is an exceptional pattern, no longer productive in the language; (ii) 
there is a preference for penultimate stress, unless (iii) the last syllable of the word is 
heavy—whereby a syllable is heavy if it is closed or if it possesses a bimoraic nucleus, 
which in the language can be an oral or a nasal diphthong or a nasal vowel (Wetzels 2007). 

These generalizations however, do not make the task of describing the mechanism(s) 
that govern primary stress assignment in the language any more amenable, as made plain 
by the ample literature debating the topic, which dwells around a number of issues: while 
stress falls on the penultimate syllable in about 62.5% of 150,000 non-lemmatized words 
in a (dictionary) corpus study of BP (Araújo et al. 2007: 42), as per generalization (ii), 
antepenultimate stress words still make up 12.2% of the total number of words in the 
dictionary and ultimate stress words add to 24.9% (Araújo et al. 2007: 42), so the language is 
neither straightforward trochaic nor straightforward iambic. With respect to generalization 
(iii), words such as sabiá and paletó shown in (1) and in (2) above demonstrate that stress 
may fall on the ultimate syllable even when it is light. Moreover, there are words in which 
the last syllable is heavy, but where stress nonetheless falls either on the penultimate or 
on the antepenultimate syllable, as well as words where the penultimate syllable is heavy 
where stress falls on the antepenultimate syllable, as illustrated in (6). These examples 
demonstrate that there are a number of exceptions to generalization (iii).

(6) Lúcifer [ˈlu. si. feɾ] ‘Lucifer’
pênalti [ˈpe. naʊ. ʧɪ] ‘penalty’
nível [ˈni. vew] ‘level’

Generalization (i), or the idea that antepenultimate stress is an exceptional pattern, has 
been more recently brought into question by corpus work such as Araújo et al. (2008), 
Araújo et al. (2007) and Viaro & Guimarães Filho (2007), all of which provide evidence 
that shows not only that the number of antepenultimately stressed words is not exactly 
marginal in the language (about 12%, as previously mentioned), but also that these words 
have been entering the language as regularly as the other two stress patterns, from the 
IX to the XX centuries. The same studies also dispute the notion that antepenultimate 
stress is a by-product of prescriptive grammar, as opposed to an integral part of speakers’ 
knowledge, pointing out the lack of psycholinguistic evidence to support those claims.

Besides the exceptions found to generalizations (i)–(iii) just discussed, the complexity of 
the stress system in Portuguese in general, and in BP specifically, displays an additional 

 18 The Phonetic Dictionary of the Portal da Língua Portuguesa posits [ə] as the quality of the epenthetical vowel 
for this word, but visual analysis of the word as produced by two speakers of BP showed that the vowel is 
more similar to [i] than to a schwa.
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facet in which, for most accounts, stress assignment in verbs appears to be subject to a set 
of rules that differs from the one acting upon non-verbs, and which is possibly conditioned 
by the language’s inflectional paradigms, as seen in (5) above and also in (7) below.

(7) pensaram [pẽ. ˈsa. ɾɐʊ̃̃] ‘to think’pst.pfv.3pl.
pensarão [pẽ. sa.ˈɾɐʊ̃̃] ‘to think’fut.3pl.
pensávamos [pẽ. ˈsa. vɐ. mʊs] ‘to think’pst.ipfv.1pl.

Given all of the facts just listed, it follows then that the task of defining the set of rules 
that govern primary word-level stress assignment in Portuguese presents a number of 
challenges. Straight arguments supporting either a syllabic or a moraic trochaic language, 
even though enticing given the stress system of Latin, are not tenable without added 
machinery. Sensitivity to quantity (QS), even if positionally restricted, would need to 
account for the irregular patterns of stress illustrated herein (and for the ones not included 
in this brief review). Given the nature of the data, while a sizable part of the literature 
subscribes to the view that stress is mostly predictable in Portuguese, authors like Câmara 
Júnior (1970) and Morais-Barbosa (1994) proposed that stress is unpredictable in the 
language, thus specified in the lexicon. With respect to sensitivity to lexical category, 
authors like Andrade & Laks (1991), Bisol (1992) and Lee (2007), among others, argue 
that stress is category-blind, while works like Garcia (2017), Hermans & Wetzels (2012), 
Lee (1997), Pereira (2007), and Wetzels (2007), among others, provide accounts where 
different rules govern stress in verbs and in non-verbs. Syllable weight is said to play a 
role for stress placement in non-verbs (Bisol 1992; Garcia 2017; 2019; Hermans & Wetzels 
2012; Massini-Cagliari 1995; Wetzels 2007, among others), but it is generally accepted 
to be non-bearing for the verbal paradigm, where stress is said to be morphologically 
conditioned.

Some of the additional machinery proposed in previous literature to account for irregular 
patterns and exceptions herein discussed include: (a) the domain of application of stress 
rules, which has been proposed to be the word (e.g., Bisol 1992) or the derivational root 
(e.g., Andrade & Laks 1991), or even a different one for verbs and for non-verbs (e.g., Lee 
1997; Pereira 2007); (b) the existence of catalectic consonants (e.g., Bisol 1992) which 
would explain stress placement in words like café [ka.ˈfɛ]; and (c) segmental and syllabic 
extrametricality, which would explain other irregularities such as antepenultimate stress 
(the last syllable is extrametrical), irregular patterns of penultimate stress, and stress 
placement in verbs (e.g., Bisol 1992).

Among recent accounts, Garcia (2017) used the Portuguese Stress Lexicon (PSL, see 
Garcia 2014)—which was built using the Houaiss dictionary (Houaiss at al. 2001) as its 
base—to perform a statistical study of stress placement in non-verbs. The author argues that 
Portuguese has a (QS) stress system, that sensitivity to weight is not restricted positionally 
in the word and, importantly, that it is gradient, not categorical, as previous analyses 
proposed. In the study, a negative correlation between weight and antepenultimate stress 
was found in the lexicon analyzed. Based on these findings, Garcia proposes a grammar 
where “stress is assigned based on a probabilistic distribution derived from the patterns 
present in the lexicon” (Garcia, 2017: 75).19 Most recently, Garcia (2019) used the same 
PSL to simulate lexica that better approximate the lexicon of an adult native speaker, 

 19 Burroni & Harmath-de Lemos (in preparation, presented at LSRL50), propose that stress in Italian and in 
Portuguese is a morphologically-driven lexical system, subject only to a Basic Accentuation Principle (BAP), 
in which the right-most accent is the one to surface, thus providing a unified account for primary stress 
placement in verbs and non-verbs and indicating a lexical statistical grammar learnable from surface forms.
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thus creating a lexical baseline to be compared to forced judgements of speakers on a 
number of conditions related to weight effects in Portuguese. The author finds that both 
lexical statistics and the grammar have a role in the phonological learning, and that in 
the case of antepenultimate syllables, lexical statistics and the grammar are at odds, since 
in the former it was found that there is a negative correlation between heavy syllables 
in antepenultimate position and antepenultimate stress, but the author’s experimental 
studies showed that speakers did not generalize this negative correlation to the nonce 
words tested. Naturalness would then be the mediator between lexical statistics and the 
grammar in the case of antepenultimate stress (Garcia, 2019: 636).

It is worth noting that, in addition to primary and secondary stress, Brazilian Portuguese 
has been reported to display an asymmetry between pretonic and posttonic syllables 
(e.g., Major 1985; Câmara Júnior 1970), whereby vowels in posttonic position are 
always unstressed. This piece of information is important because it plays a key role in 
determining how the results of the classification experiments are to be computed, a matter 
discussed in more detail in the Methodology section. 

2.2. The West Point Brazilian Portuguese Speech Corpus
The West Point Brazilian Portuguese Speech corpus (LDC2008S04–Morgan et al. 2008), 
hereafter referred to as WPC, contains digital recordings designed and collected by the 
Department of Foreign Languages (DFL) at the United States Military Academy at West 
Point, and at the Center for Technology Enhanced Language Learning (CTELL). Recordings 
were made at the Brazilian military academy in Brasília in 1999.

The corpus is relatively balanced for gender, with sixty (60) female and sixty-eight (68) 
male native monolingual and bilingual speakers, who were recorded while reading a script 
containing two hundred isolated sentences. The WPC contains 131 declarative sentences, 
49 interrogatives, and 20 negated sentences. The longest sentence in the prompts has ten 
words, and the shortest, one. In addition to containing a number of speakers sufficient 
to perform an ASR study, the corpus was chosen under the working assumption that the 
number of repetitions of the same word in the exact same prosodic context would be 
advantageous in training acoustic models of the language’s segmental material. Moreover, 
a corpus of read speech is likely as effective as a corpus of spontaneous speech when 
looking at the acoustic correlates of stress in BP. For example, the results found in Barbosa, 
Eriksson & Åkesson (2013: 285) pointed to “…a similar effectiveness of phrase reading 
and spontaneous styles in uncovering the word stress acoustic correlates in BP, at least for 
duration and F0 standard deviation.”

Out of the 128 speakers in the corpus, data from bilingual speakers—female speakers 
f40–f45, and male speakers m38–m52—were excluded from the study. Not all 200 
sentences in the prompts were uttered by the 99 speakers included in the study, resulting 
in 7846 utterances, for a total of 39,894 word tokens.

There are 516 distinct word shapes in the WPC’s prompts,20 a figure which is not thought 
to be a significant limitation to the study given the total number of word tokens in the 
corpus, adding to roughly 150,000 vowel tokens available to build the acoustic model. A 
brief summary of the corpus structure is given in Table 1.

The distribution of words in the corpus as a function of the number of syllables and of 
citation stress position is detailed in Table 2. Note that the number of syllables reported in 
this Table refers to a base pronunciation and not necessarily to the surface pronunciation 

 20 This number comes after compound words like quinta-feira and guarda-chuva were included as two separate 
entries each in the lexicon, quinta, feira, guarda and chuva.
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produced by each speaker,21 which may be subject to epenthesis, syncope, and other 
phonological processes. Penultimate stress disyllabic words are the most frequent in the 
corpus, followed by ultimate stress disyllables, and by penultimate stress trisyllables. 
Note that the dashes (–) mean that the combination is not a logical possibility (as in 
antepenultimate monosyllable, for example), while the zeros (0) mean that there are no 
occurrences of that particular pattern in the West Point Corpus. In the Table, NA means 
that, although the pattern is a logical possibility, found in the language, and in the West 
Point corpus, it is not being included in the count for that particular cell in the Table. This 
is the case, for example, for disyllabic and trisyllabic function words.22 

2.3. Kaldi and ASR
Kaldi (Povey et al. 2011) is an open source Automatic Speech Recognition (ASR) toolkit, 
written in C++ and licensed under the Apache License 2.0. To the end user, from an 
input/output perspective, Kaldi is a collection of commands that can be used to both 
force-align speech and convert it into text. It is language-independent, and it encompasses 
normalization and transform algorithms to conduct speaker-independent and speaker-
dependent research. The Kaldi toolkit can currently23 extract standard MFCC (Mel 
Frequency Cepstral Coefficients) and PLP (Perceptual Linear Predictive) features from 
the speech signal. It models the acoustic data using either GMM-HMM (Gaussian Mixture 

 21 This figure reflects the expected canonical pronunciation in read speech. The number of syllables in certain 
words may vary according to pronunciation, one example being the word compreendo, which may be 
pronounced [kõ . pre . ẽ . dʊ], with four syllables, or [kõ . prẽ. dʊ], with three syllables.

 22 Since, differently from their monosyllabic counterparts, longer function words are not thought to fall under 
any special consideration as far as stress is concerned, they are counted together with all other words of the 
same size (in syllables) in the subsequent columns.

 23 Kaldi is ever changing and evolving, as is its documentation, so the discussion herein reflects not only 
Povey and colleague’s seminal 2011 paper, but also information retrieved from Kaldi’s documentation, last 
accessed in June 2019.

Table 1: General Information on the West Point Corpus.

Distinct sentences in prompts 200 Utterances Aligned 7846

Shortest sentence (words) 1 Longest Sentence (words) 10

Distinct word shapes in prompts 516 Word tokens in Corpus 39894

Native speakers 99 Declarative Sentences 131

Native female speakers 46 Interrogative Sentences 49

Native male speakers 53 Negations 20

Table 2: Word tokens in the WPC as a function of the number of syllables and stress locus.

Num Syll. Stress Position Grand Total

Monosyll Function Ultimate Penultimate Antepenultimate

1 11917 3354 – – 15271

2 NA 4831 10507 – 15338

3 NA 1434 4219 214 5867

4 NA 154 2185 53 2392

5 NA 0 735 98 833

6 NA 0 193 0 193

Grand Total 11917 9773 17839 365 39894
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Models-Hidden Markov Models) or SGMM/HMM (Subspace Gaussian Mixture Models-
Hidden Markov Models). More recently, three DNN-HMM (Deep Neural Network-Hidden 
Markov Models) algorithms were added to the toolkit. Kaldi accepts, in principle, any 
Language Model (LM) that can be compiled into a Weighted Finite State Transducer 
(WFST).

To convert speech to text, in ASR24 systems in general and in Kaldi specifically, the 
speech signal undergoes first feature extraction, a process wherein speech is windowed, 
typically in 25 millisecond slices, with one such slice being computed every 10 milliseconds. 
These discrete windows are then converted into high dimension (39 dimensions in Kaldi’s 
MFCCs), fixed size acoustic vectors, a process that can be completed using a few different 
encoding methods, among them, the two with which Kaldi works, MFCCs and PLPs. Each 
of the vectors generated in this fashion is known as an observation. Given a sequence 
O of such observations, the job of a speech recognition system is to find the maximally 
probable sequence of words W in language L that generated O, in other words, the ASR 
system needs to find the maximum likelihood of W given O. 

 
)ˆ ( |WW argmax P W O  (1)

Estimating P(W|O) directly—a pattern recognition problem—has not proven successful in 
the past,25 so the naïve Bayes’ Rule, implemented employing generative models such as 
HMMs, is used instead.

 

   
 

|( | ) P O W P WP W O P O  (2)

The probability of an observation, P(O) is the same for each candidate sentence W, so the 
maximal value can be given by:

 
 ˆ ( | )WW argmax P O W P W  (3)

The likelihood of observing a given sequence of words P(W), where W ∈ L, is a prior 
calculated based on the Language Model (LM). The probability of a sequence of observations 
O given a sequence of words W, or (P(O|W), is calculated from the acoustic models (AM) 
and from the lexicon.

 
       | | |

Q
P O W P O Q P Q W P W   (4)

where Q = [q1, q2, …, qT] is a sequence of acoustic states, one per frame. Resorting to an 
exceedingly abbreviated description here, P(O|Q) is calculated using information from 

 24 In addition to the literature cited herein, this sub-section benefited greatly from the many tutorials and 
lectures on ASR and on Kaldi that I read over time, in special: Daniel Povey’s Kaldi Lectures, Andrew Maas’ 
Spoken Language Processing Lectures, and Gilles Boulianne & colleagues’ ASR with Kaldi Tutorial.

 25 Newer approaches in pattern recognition, using end-to-end modeling are showing progress in the task of 
estimating P (W|O) directly.
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the Mixture of Gaussian probability density functions (PDFs), and P(Q|W) is calculated 
using information from the Hidden Markov Models (HMMs).

Implementation-wise, in Kaldi (and also in other ASR systems), finding an answer to 
equation (2) is done by creating a weighted finite-state transducer (WFST) decoding graph 
H ° C ° L ° G, a composition of the HMM (H), the phone Context-dependency Model (C, 
see following paragraphs), the Language Model or Grammar (G), and the Lexicon (L). The 
most probable path through the decoding graph will give the most probable sequence of 
words that generated a given sequence of observations.

Within the architecture just discussed, P(O|W), or the likelihood that a sequence of 
observations be made given a sequence of words W in language L, is of immediate interest 
to the present study. In other words, we are interested in the decisions made during 
the forced alignment process, which is described hereafter in further detail. Figure 1 
summarizes the discussion so far.26

One crucial step of ASR is to extract meaningful information from the speech signal (the 
feature extraction process). During this process, the idea is to extract spectral information 
that maximizes phone recognition, so characteristics of the source (such as F0 and other 
details about the glottal pulses), which are not fundamental for phone detection are not 
directly modelled. 

The most popular type of feature used in ASR is the MFCC (Mel Frequency Cepstral 
Coefficient), among other factors because it approximates human perception of speech 
better than other feature systems. This is partly because the windowed speech signal is 
filtered through a Mel-scaled filter bank, which introduces information about the human 
auditory perception into the model.27 This process hence steers the model to focus on 
information that humans would find relevant in the speech signal. 

 26 This figure is very similar to the one in Andrew Maas’ ASR lecture number 3, Andrew Maas’ Spoken 
Language Processing Lectures.

 27 The idea of using a Mel-scaled filter bank hinges on the fact the humans do not perceive frequency linearly, 
and the Mel-scale maps the perceptual distance between pitches of different frequencies.

Figure 1: General architecture of an ASR system.
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MFCCs are described in some detail here as it is relevant for the present work to understand 
what information of the speech signal is kept in this compressed representation of it. 
Figure 2 shows a summarized block diagram of the extraction process as standardized 
by ETSI (ETSI 2003). Given this extraction process, MFCCs are subject to significant 
loss of information present in the original speech signal. The magnitude operation, for 
example, causes the loss of the phase information, while the Mel-filtering and the vector 
truncation (post-Discrete Cosine Transform) cause the loss of spectral detail (see, for 
example, Darch et al. 2005; Darch, Milner & Vaseghi 2006; Darch et al. 2007). In the 
framework of speech recognition, work such as Zheng & Zhang (2000) showed that 
speech recognition became much more robust once energy information was added to the 
MFCC vectors, and thus adding an energy coefficient through the logE operation, as seen 
below, became standard.

Figure 3 below illustrates what the signal would look like if the truncated MFCC vectors 
were reversed back to a magnitude spectral representation. The blue line is the magnitude 
spectra derived from the MFCC, while the thinner line represents the original magnitude 
spectra.

Thus, MFCCs are a smoothed representation of the spectral envelope of the speech signal, 
and also contain one coefficient that keeps energy information. Still in the framework 
of speech recognition, it is noteworthy to mention that works by Darch and colleagues 
(Darch et al. 2005; Darch, Milner & Vaseghi 2006; Darch et al. 2007), have shown that 
formant frequencies can be accurately estimated (when compared formants calculated 
using LPC analysis) from MFCCs.

In Kaldi (and in ASR in general), feature vectors have hence 12 MFCC coefficients plus 
one energy feature. In addition to these 13 dimensions, to add some dynamics to the 
stationary observations, first order (the deltas) and second order (the deltas of deltas) 
derivatives of each MFCC and of the energy coefficient are calculated and added, resulting 
in a 39-dimensional feature vector.

The acoustic features extracted from the speech signal have to be modeled so that the 
ASR system can learn which feature vectors correspond to which phones. One of the most 
widely adopted modeling techniques, used in the present study, is the GMM-HMM acoustic 
modeling. The basic unit of this acoustic model is a context-independent (CI) phone, 
or a phone that is modelled independently from its neighboring phones. Alternatively, 

Figure 2: Block diagram of the ETSI Aurora standard for MFCC extraction.



Harmath-de Lemos: Detecting word-level stress in continuous speechArt. 3, page 14 of 43  

context-dependent (CD) phones28 can also be used, but the latter fall outside of the scope 
of the present study (see comment in the Methodology section below). Each phone is 
usually modeled as a set of subphones or states, traditionally three of them (plus start and 
end states), so that in the word ‘cat’ [k æ t], for example, the phone [æ] would have three 
states (subphones), [æ]_1, [æ]_2, and [æ]_3. For each sub-phone there are two possible 
transitions, one to the next state, and one self-loop. Transitions from state i to state j are 
assigned probabilities, call them aij, or the transition probability. The word ‘cat’, would be 
then represented as in Figure 4.29 

These states are generated using information from the lexicon (phonetic dictionary), 
and now need to be evaluated, in other words, we need to find out the likelihood of a 
sequence of observations given a specific HMM. The task is accomplished by associating 
a likelihood function to each state, modeled using a Mixture of Gaussians that generate 
probability density functions (PDFs). The continuous density HMM model for ‘cat’ would 
look as illustrated in Figure 5.

In this subsection, we briefly reviewed how Kaldi (Povey et al. 2011) specifically, and 
ASR tools in general, find the maximally probable sequence of words W in a language L 
to have generated the sequence of (acoustic) observations O made from the speech signal. 
Crucially, we reviewed the information extraction process used to generate MFCCs and 
work that showed that these vectors encode a smoothed representation of the spectral 
envelope, from which it is possible to accurately predict formant frequencies (e.g., Darch 

 28 In ASR context-dependent (CD) phones were shown to greatly improve speech decoding into text. In these 
types of phones, a different model is created for a given phone as its neighboring phones change, so the 
phone [i], for example, would have different models depending on which phones surround it, [b i t] ≠ [m 
i t] ≠ [m i n]. The most commonly used model is a triphone, which is built taking into consideration the 
phones immediately to the left and immediately to the right of the phone being modelled, but pentaphone 
and heptaphone models have also been used.

 29 This is a left-to-right (or Bakis) HMM, which is the structure used by Kaldi. Another possible structure is the 
Ergodic, a fully connected HMM structure, not shown here.

Figure 3: Original (black line) and MFCC-derived (blue line) magnitude spectra.
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et al. 2005; Darch, Milner & Vaseghi 2006; Darch et al. 2007). Furthermore, MFCCs also 
encode an energy (logE) coefficient (ETSI 2003), which was shown to increase robustness 
in recognition.

3. Methodology
The first step in the study is to train an acoustic model, which was done here using 
the ASR toolkit Kaldi (Povey et al. 2011) and speech data from the West Point Corpus 
(Morgan et al. 2008). To train an acoustic model and to perform the test experiments, 
Kaldi needs a pronunciation dictionary (herein interchangeably referred to as the lexicon 
or the phonetic dictionary), a list of phones, a language model (LM) and transcripts of the 
data. The first two were developed specifically for this study, and were designed having 
linguistic units in mind as opposed to the units motivated by engineering that are more 
traditional in the field of ASR. With respect to the LM, because decoding speech into text 
is not the objective of the study, elaborate language models are not expected to have a 
bearing on the answers sought here, and therefore a unigram model30 was used to align 
the corpus. The transcripts of the data were retrieved straight from LDC distribution for 
the West Point Corpus (WPC) and were corrected for inaccuracies found out during an 
auditory inspection of the corpus in its entirety.

To ensure that the acoustic model is not over-fitted, a 5-fold cross-validation process 
was followed, whereby the corpus was split into five disjoint subsets, balanced for prompt 
type, and the entire study, including the training pass and the three experiments, was 
iterated throughout five times. In other words, for each of the five folds, the training pass 
was done using 4/5 of the corpus, and the three experiments described in this section 
were performed separately over both the training data set (the 4/5 of the corpus) and the 
remaining 1/5 of the corpus, the test data set. The corpus-splitting process resulted in five 
training data sets containing between 6206 to 6376 utterances and in five test data sets, 
each containing between 1470 to 1640 utterances. 

Three experiments were designed to test a classifier’s prediction skills about stressed and 
unstressed vowels when using the acoustic model, the first of which generates baseline 
performance expectations, as it presents the classifier with the most complex problem to 

 30 I thank Mats Rooth for the unigram model used throughout the study.

Figure 4: Raw HMM for ‘cat’.

Figure 5: GMM-HMM for ‘cat’.
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solve. This experiment is performed using a lexicon where, for each word shape, there are 
as many entries in the lexicon as there are syllables and combinations thereof in the word 
shape, the mathematical equivalent to 2n entries per word shape (where n stands for the 
number of syllables in a word), each of which is labelled with one of the 2n possible stress 
placement configurations. This process is repeated for each of the possible pronunciations 
given to a specific word shape. This lexicon (phonetic dictionary) configuration is 
analogous to asking the classifier to predict whether in a given word token, any vowel, 
no vowel, or any combination thereof, is more similar to the model of a stressed vowel or 
to the model of an unstressed vowel of its quality, or, which word shape in the 2n lexicon 
maximally corresponds to the acoustic observations made from the speech signal for that 
particular word token.

A second experiment is carried out with a lexicon that contains n+1 entries per word 
shape (again, n being the number of syllables in the word), each of which is labelled for 
stress in a sole vowel of the word, and an additional entry where no vowels are labelled as 
stressed. This experimental condition constitutes a way of forcing the classifier to choose 
exclusively one of the vowels in the word as the stress-bearing vowel, or no vowel at all. 
The third experiment is conducted using a lexicon that contains n distinct entries for each 
word shape, each of which is labelled for stress in a sole vowel of the word. 

The lexica described above are used in each experiment in such a manner that, to generate 
the forced alignments, a decision has to be made as to which of the possible renditions 
of a given word in the lexicon—represented as a sequence of the phones contained in the 
word—generates the sequence with maximal probability given the observations made. 

As mentioned in the Background section, for the purposes herein, the interest lies on 
the representations generated by context independent (CI) phones. This is because the 
working premise is that stressed vowels are systematically different from their unstressed 
counterparts regardless of phonetic context (even though both the former and the latter 
will vary as a function of the neighboring sound segments). Furthermore, from a modelling 
standpoint, the lexicon is too small for it to be sensible to work with context-dependent 
(CD) phones, such as triphones. As a consequence, only monophone alignments (CI 
phones) are computed throughout the study. 

During training, there needs to be a bootstrapping pass to generate the monophone 
model. This was done using 4000 utterances of the training data sets, and the model was 
trained using Kaldi’s train_mono.sh script (4 jobs, one machine). A monophone model for 
each of the 5 folds is trained using the list of phones and the lexicon labelled for citation 
stress described in the following subsections (3.1.1, 3.1.2). For each training and test data 
set in each of the 5 folds, in each of the three experiments, MFCCs are computed using the 
proper rendition of the lexicon. Following the training pass, also for each of the five folds 
and three experiments, both the training data set and the test data set are force-aligned 
using the relevant monophone model, rendition of the lexicon and the corresponding 
MFCCs. The forced alignments were generated using Kaldi’s align_si.sh script (8 jobs, one 
machine). 

The results were retrieved from the forced alignment files that Kaldi generates (the 
ali* files), using Perl and Python scripts written specifically for the task, and were then 
averaged over the five folds in each experiment and in each data set. A second set of 
scripts summarized the data according to the description laid out in the Data Analysis 
subsection below. A file containing the raw summarized data was then imported into 
Microsoft Excel 16.43, where the performance metrics were calculated. Monosyllabic 
function words were tallied separately because no assumptions can be made about them 
(see section 3.2 and 3.3) with respect to stress. 
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The remainder of this section describes in further detail the list of phones and the 
phonetic dictionary constructed for this study. The section ends with a description of 
how the results were analyzed, which offers important information about the manner 
in which stressed vowels are compared to unstressed ones, both syntagmatically and 
paradigmatically.

3.1. The List of Phones
For the purposes of the present study, a list of phones should capture two crucial aspects: 
the first is related to the nature of the study itself, since, differently from most work done 
using speech recognition, the objective herein is to represent linguistic units, as opposed 
to simple acoustic units. So, for example, whereas diphthongs (e.g., [aʊ]) are encoded as 
two acoustic segments ([a] + [ʊ]) in many ASR studies, they are encoded as one linguistic 
unit herein (e.g., [aʊ]), under the assumption that neither the unstressed diphthong nor 
its stressed counterpart are just the sequential combination of the exact monophthongs 
[a] and [ʊ], in other words, [ˈaʊ] ≠ [ˈa] + [ˈʊ].

The second aspect which the list of phones should capture is related to the number 
of phones needed in order to represent a reasonable amount of phonetic variation that 
exists in any language, specifically with respect to vowels. To encode said variation, three 
sources of information were considered: the phones described in Barbosa and Albano 
(2004), the phones used in the phonetic dictionary of the ‘Dicionário Fonético da Língua 
Portuguesa’ (Correia et al. 2019), and the present author’s native intuition.

Implementation-wise, each phone within the list of phones was encoded to mirror the 
Advanced Research Project Agency’s (ARPA) ARPAbet31 as used in the Carnigie Mellon 
University Phoneme Set whenever possible, and new encodings following the paradigms 
of the CMU phoneme list were added as needed. Vowels marked with the digit 1 are 
understood to be vowels that bear stress and vowels with no additional markings are 
understood to be unstressed.

In the study, we want to keep the models of the stressed and unstressed counterparts 
of a given vowel quality independent from one another. To accomplish that, the former 
and the latter do not share the same phonetic symbol, and are each modeled with distinct 
Gaussian Probability Density Functions. In implementational terms this means that each 
phone in the phone list is added to a different line of the file nonsilence_phones.txt.

In view of the details and constraints explained so far, 25 consonant and 74 vowel phones 
are represented in the list, totaling 99 phones, a number that includes one stressed and one 
unstressed counterpart for each vowel quality represented. This is because, even though 
the distribution of vowels in the language is such that some vowel qualities never bear 
stress and others, conversely, overwhelmingly bear stress, in the different experimental 
conditions it is assumed that any vowel quality may be stressed or unstressed, thus these 
need to be represented in the list of phones.32 Table 3 summarizes the distribution of 
phones in the list per segment type.

 31 Although the Extended Speech Assessment Methods Phonetic Alphabet (X-SAMPA) is more representative 
of the IPA, and could have been used as an encoding method instead, some of the XSAMPA symbols are less 
tractable for computation purposes (e.g., stress placement is marked by double quotes (") in XSAMPA).

 32 A few examples of this asymmetry are the word-final reduced vowels [ɪ] and [ʊ], which appear only in 
posttonic position, and the vowels [ɛ] and [ɔ], which occur almost exclusively in stressed position in the 
language, except for polymorphemic words (e.g., pezinho [pɛ .ˈzi . ɲʊ] ‘feet’dim., and somente [sɔ .ˈmẽ . ʧɪ] 
‘only’). Analogously, the oral diphthongs [ɛɪ], [ɔʊ], [ɛʊ], and the nasal diphthongs [ɐʊ̃̃], [ɐɪ̃]̃ are rarely 
found in unstressed positions of the (monomorphemic) word.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict?in=desert&phones
http://www.speech.cs.cmu.edu/cgi-bin/cmudict?in=desert&phones
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3.2. The Lexicon
The base phonetic transcription for each word in the lexicon reflects the Rio de Janeiro 
standard pronunciation of the word as given in the Dicionário Fonético da Língua Portuguesa of 
the Portal da Língua Portuguesa (Correia et al. 2019). The São Paulo standard pronunciation 
was used when found to be more representative of a given word token in the prompts, 
after an audio inspection of the corpus.33 In addition, recall from the introductory section 
of this study that the phonetic dictionary incorporates explicit pronunciation modeling for 
each word entry. Because the WPC does not provide data that identifies the geographic 
provenance of each speaker, the explicit pronunciation modeling used in the dictionary 
intended to capture three main sources of variation: (i) common, generally widespread 
phonetic variation processes found in BP, which are not necessarily associated to a specific 
regional variety; (ii) some regional variation in vowels, found out to be present in the 
West Point corpus during the audio inspection, and (iii) reduction processes found upon 
visual inspection of the corpus utterances in Praat (Boersma & Weenink 2019). Table 4 
exemplifies some of these variations.34 Note that while Table 4 exemplifies some of the 
processes just mentioned, it is not the comprehensive list of pronunciations encoded in 
the lexicon for these words.35 

Following the base (citation) phonetic pronunciation encoded in the lexicon, as described 
in the beginning of this section, and taking into account the number of word tokens in the 
corpus, the distribution of phones is approximately as given in Table 5. Note that there is 
a rough balance between the rate of consonant tokens (49.5%) and that of vowel tokens 
(50.5%). It is important to notice however, that speakers do not necessarily utter the base 
phonetic pronunciation of any given word token, which can considerably alter the actual 
number of consonant and vowel tokens in the corpus.

All of the 905 distinct words that formed the lexicon originally embedded in the West 
Point corpus (of which only 516 are present in the 200 corpus’ prompts used in this study) 
were modeled for explicit pronunciation, generating a lexicon that contains 2,057 word 
entries labelled for stress in citation position. 

There are four renditions of this explicit pronunciation-modeled lexicon: one which is 
used during the training pass, and three others, used during the experiments described in 
the initial paragraphs of this section. The rendition of the lexicon used during the training 
pass contains only words labelled for stress in citation position, which in practice means 
that the vowels found in stress citation position of a word are marked with a digit 1. With 
respect to monosyllabic function words—and their corresponding phonetic variants—
these were the only words to be encoded two-way in all renditions of the lexicon: one 
where the (sole) vowel was labelled as stressed (digit 1) and the other where the vowel 

 33 This is the case, for example, for the word água (ʽwaterʼ), which was more consistently refereed to be a 
disyllabic word by a linguist native speaker, a pronunciation consistent with the São Paulo standard variety 
[ˈa. gwɐ], as opposed to the Rio de Janeiro standard, [ˈa. gu.ɐ].

 34 Note the /S/ represented in words três, paz and voz, as these can surface as [s z], depending on the word 
that follows and on the syntactic structure of the sentence.

 35 Additional pronunciations for the word setecentos (seven hundred), for example, include the affricate 
allophone [ʧ].

Table 3: Number of phones of each type in the List of Phones.

Consonant Vowel

Monophthong Diphthong

Oral Nasal Oral Nasal

25 22 10 34 8

http://www.portaldalinguaportuguesa.org/main.html
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had no label (unstressed). This strategy was adopted to reflect the fact while monosyllabic 
function words are generally destressed, a sizable rate of them in the corpus were uttered 
bearing focus or are stressed for other reasons.

In the remaining three renditions of the lexicon all word entries were labelled for stress 
placement according to each experimental condition: for the baseline experiment, each 
entry in the lexicon has 2n renditions (n being the number of syllables), and analogously 
for experiments n+1 and n. Table 6 shows snippets of the lexica just described. In the 
testing experiments, for each word token, the model chooses among a set of competing 
pronunciations, such as the pronunciations [a b r ahx1] and [a1 b r ahx] for the dictionary 
entry abra1N. Here the word form is used to determine what pronunciations are in 
competition in a given experimental condition.

3.3. Data Analysis
The analyses of the predictions made by the classifier in the three experiments (explained 
at the end of the present section) will offer slightly different insights about stressed 
and unstressed vowels, from both a syntagmatic and a paradigmatic perspective. 
Syntagmatically-speaking (are stressed vowels distinct from the surrounding vowels?), 
experiment n illustrates which position of the word token is occupied by the vowel that 
best fits the model of a stressed vowel of its quality. Experiment n+1 will offer an insight 
on whether there is one vowel in the word token, or whether there are no vowels at 
all, thought to best fit the model of a stressed vowel of its quality, in a way akin to (a 
phonetic version of) Obligatoriness (as in Hyman 2006: 231). An analysis of the results 
from experiment 2n, where the choices are unconstrained,36 will highlight whether is there 
more than one vowel in the word token that fits more closely to the model of a stressed 

 36 Although this experiment could potentially offer an insight into a phonetic version of Culminativity, as 
understood in Hyman (2006: 231), there isn’t sufficient data in the literature to ensure that pretonic vowels, 
if they bear secondary stress, are phonetically different from their stressed counterparts, nor how they 
differ, with respect to acoustic correlates.

Table 4: Examples of explicit pronunciation modeling included in the Lexicon.

dia ‘day’ /dia/ → [ˈʤi. ɐ]

dente ‘tooth’ /deNte/ → [ˈdẽ. ʧɪ]

zoológico ‘zoo’ [zo. o.ˈlɔ. ʒi. kʊ] OR [zo.ˈlɔ. ʒi. kʊ] 

gratuita ‘free’ [gɾa.ˈtuɪ. tɐ] OR [gɾa. tu.ˈi. tɐ] 

paz ‘peace’ /paS/ → [paɪs]

três ‘three’ /tɾeS/ → [tɾeɪs]

voz ‘voice’ /vɔS/ → [vɔɪs]

janeiro ‘January’ /ʒaneɪro/ → [ʒa. ˈne. ɾʊ]

eixo ‘axis’ /eɪʃo/ → [ˈe. ʃʊ]

televisão ‘TV’ [te. le. vi. ˈzɐ̃ʊ̃] OR [tɛ. lɛ. vi. ˈzɐ̃ʊ̃] 

ocupado ‘busy’ [o. ku. ˈpa. dʊ] OR [ɔ. ku. ˈpa. dʊ]

crédito ‘credit’ [ˈkrɛ. ʤi. tʊ] OR [ˈkrɛʤtʊ]

setecentos ‘seven hundred’ [sɛ. te. ˈsẽ. tʊs] OR [sɛtˈsẽtʊs]

Table 5: Phone distribution in the West Point Corpus.

Consonants Vowels Total Phones

76,790 78,466 155,256
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vowel of its quality in that particular word token. Paradigmatically (how do stressed 
vowels compare to unstressed vowels?), the analysis of the results of each experiment 
offers insights on how well can unstressed vowels be told apart from stressed vowels when 
there are stringent restrictions—as in experiment condition n, where one vowel in the 
word token has to be stressed and all others have to be unstressed—and whether these 
differences hold as the restrictions are relaxed—as in experiment condition 2n, where any 
vowel, any combination of vowels, or no vowel in the word token may be stressed (or 
unstressed). 

In addition to the paradigmatic and syntagmatic observations we seek to make, two other 
relevant pieces of information should be taken into account when outlining the analysis 
methodology for this study: from the discussion presented in section 2 (Background), 
recall that secondary stress can potentially be a confounding factor, because it is unclear 
whether secondarily stressed vowels are acoustically more similar to a primarily stressed 
vowel or to an unstressed vowel in BP. Moreover, the position occupied by secondary stress 
in a word is also unclear in the language: recall that there are competing accounts about 
the locus of SS in a word. It is therefore a possibility that any vowel located to the left of 
the primarily stressed vowel could potentially bear secondary stress. As a result, encoding 
information about secondary stress in the phonetic dictionary to eliminate potentially 
confounding factors is not an option and the alternative is to take secondary stress into 
consideration when processing the results from all experiments. The second crucial piece 
of information (also discussed in the Background section) is that posttonic vowels in BP are 
generally described to be unstressed. These factors, added to the observation made about 
monosyllabic function words in section 3.2 (The Lexicon) are operationalized through the 
following considerations: 

Table 6: Stress Placement in the different renditions of Lexicon.

abra1T a1 b r ahx abra1N a b r ahx1 

Training chame1T sh ah1 m e abra1N a1 b r ahx 

chame1T sh ah1 m ihx chame1N sh ah m e1 

vários1T v a1 r iw s chame1N sh ah m ihx1 

Experiment n chame1N sh ah1 me 

abra2N a b r ahx chame1N sh ah1 m ihx 

abra2N a b r ahx1 vários1N v a r iw1 s 

abra2N a1 b r ahx vários1N v a1 r iw s

abra2N a1 b r ahx1 

chame2N sh ah m e abra1N1 a b r ahx 

chame2N sh ah m e1 abra1N1 a b r ahx1 

Experiment 2n chame2N sh ah1 me abra1N1 a1 b r ahx 

chame2N sh ah1 me1 chame1N1 sh ah m e 

chame2N sh ah m ihx chame1N1 sh ah m e1 

chame2N sh ah m ihx1 Experiment n+1 chame1N1 sh ah m ihx

chame2N sh ah1 m ihx chame1N1 sh ah m ihx1 

chame2N sh ah1 m ihx1 chame1N1 sh ah1 m e 

vários2N v a r iw s chame1N1 sh ah1 m ihx 

vários2N v a r iw1 s vários1N1 v a r iw s 

vários2N v a1 r iw s vários1N1 v a r iw1 s 

vários2N v a1 r iw1 s vários1N1 v a1 r iw s
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(i) No ground truth can be assumed about the vowels to the left of the (citation 
position) stressed vowel.

(ii) Posttonic vowels should be unstressed.
(iii) Primary stress is located in the citation position of the word.
(iv) No assumptions are made about monosyllabic function words.

In practical terms, item (i) above means that results for the vowels located to the left of 
the stressed vowel are computed separately. Item (ii) means that predictions of stressed 
vowels in posttonic position should be penalized and (iii) means that predictions of 
stress in citation position are rewarded. Consideration (iv) means that the results for 
monosyllabic function words are always counted separately.

Two sets of metrics summarize the complementary perspectives we seek (syntagmatic 
and paradigmatic). To compute the predictions made by the classifier from the perspective 
of word tokens as a unit, the data are summarized in the following manner: Matches (M) 
are assigned to aligned word tokens where the vowel predicted to be stressed matches 
citation position for that word in the lexicon (the ground truth) and all other vowels in 
the token were predicted to be unstressed. Partial Matches (PM) mean slightly different 
things for the different experiments: in experiment n and in experiment n+1, a Partial 
Match (PM) is a prediction of stress on a vowel located to the left of the citation stress 
vowel,37 and posttonic vowels are predicted to be unstressed, while for experiment 2n a 
Partial Match (PM) means that the classifier predicts stress on the vowel located in citation 
position and on any vowel located to the left of citation position, while all posttonic 
vowels are predicted to be unstressed. Mismatches (MM) are the instances of aligned word 
tokens in which the classifier predicts a posttonic vowel to be stressed, regardless of the 
predictions made about the other vowels in the word token (even if those are paired with 
a prediction matching citation position). Lastly, the metric Unstressed (U) encompasses the 
counts of word tokens where the classifier predicted that none of the vowels are stressed.

With the counts just described in mind, two accuracy rates and two error rates are 
calculated: an overall Composite Accuracy Rate (CAR) is calculated by summing the Partial 
Matches (PM) and the Matches (M), while an overall Accuracy Rate (AR) is computed 
using the count of Matches (M) only. Notice that these accuracy rates are not the same as 
the Accuracy metric calculated using the confusion matrices described below. The overall 
Error Rate (ER) is computed using the count of Mismatches (MM) only, and the Composite 
Error Rate (CER) is calculated through the sum of Unstressed (U) and Mismatch (MM) 
tokens. These metrics are shown below in formulae (5)–(8). Note that TotWT corresponds 
to the total number of word tokens being evaluated.

 
100

WT

MAR Tot
 (5)

 
100

WT

MMER Tot  (6)

 

  100
WT

PM MCAR Tot


  (7)

 37 This is done because nothing can be assumed about these vowels, and choosing more than one vowel as 
stressed in these experiments is not a possibility.
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  100
WT

MM UCER Tot


  (8)

The second set of metrics calculated here reflects the discriminatory skills of the predictions 
made in the experiments (offering a paradigmatic perspective of stressed and unstressed 
vowels), and it is calculated from the tabulation of confusion matrices, where the data are 
summarized in the following fashion: for each word token aligned, a prediction of stressed 
vowel in stress citation position is counted as a True Positive (TP) and a prediction of 
unstressed vowel in stress citation position is counted as a False Negative (FN). Conversely, 
a prediction of unstressed vowel in pretonic or posttonic position is counted as a True 
Negative (TN), and finally, predictions of stressed vowels in pre- or posttonic positions are 
counted as False Positives (FP).

To provide a clearer account of the results, taking into consideration differences in class 
sizes and other imbalances that exist in natural language in general and in the WPC data 
set specifically, the counts in the confusion matrices are used to calculate the following 
metrics: Accuracy, Precision, Sensitivity, Specificity, F1-score, the Matthew’s Correlation 
Coefficient (MCC), the Cohen’s Kappa Coefficient (Kappa), the False Positive Rate (FPR), 
the False Discovery Rate (FDR), and the False Negative Rate (FNR), using the following 
formulae:

 

 
 

TP TNAccuracy TP FP TN FN



  

 (9)

  
TPSensitivity TP FN
  (10)

  
TNSpecificity TN FP
  (11)

  
TPPrecision TP FP
  (12)

  
2 *1 2 *

TPF score TP FP FN
   (13)
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FPFalse Positive Rate FPR FP TN
  (16)

 
   

         
FPFalse Discovery Rate FDR FP TP
  (17)

 
   

         
FNFalse Negative Rate FNR FN TP
  (18)

Accuracy gives the rate of correct predictions made about both classes of vowels, stressed 
and unstressed. Sensitivity is the rate of vowels correctly predicted to be stressed among 
all of the vowels expected to be stressed (the ground truth of stress locus for each 
word), while Precision is a measure of the performance of the classifier that shows the 
rate of vowels that are truthfully stressed among all vowels which were predicted to 
be stressed. Specificity is the rate of vowels correctly identified as unstressed among all 
vowels expected to be unstressed. Sensitivity and Specificity are, in a way, a metric of 
correlation between the predictions of stressed and unstressed vowels and the ground 
truth of each. The F1-Score provides an alternative measure of Accuracy, showing the 
balance between Precision and Sensitivity. The False Positive and the False Negative rates 
present a complementary perspective to Specificity and Sensitivity, and the False Discovery 
Rate is complementary to Precision.

The metrics just described provide complementary insights on the results obtained for 
stressed and unstressed vowels but are not adjusted for imbalances that may exist in the 
size of the classes represented in the confusion matrices (TP, TN, FP, FN), and do not take 
in consideration the probability of chance agreement between the predictions made by 
the classifier and the ground truth. The Matthews’ Correlation Coefficients (MCCs) and the 
Cohen’s Kappa Coefficients (Kappa) fill in these gaps.

The MCCs are a measure of the strength of the correlation between two raters, and they 
take into consideration the proportion of each class in the confusion matrix (TP, TN, FP, 
FN). MCCs range between –1 ⩽ MCC ⩽ 1, where –1 means complete disagreement, 0 
means chance agreement and 1 means perfect agreement between the predictions and the 
ground truth.38

The Kappa shows the chance-corrected standardized measure of agreement between 
the predictions and the ground truth. A Kappa coefficient ranges from –1 ⩽ κ ⩽ 1, where 
–1 would mean perfect disagreement between predictions and the ground truth, 0 would 
mean that the amount of agreement found can be expected from random chance, and 
1 represents perfect agreement.39 For each Kappa Coefficient calculated, the confidence 
interval is also given. A Kappa value between 0.61 and 0.8 denotes substantial agreement 
between predictions and the ground truth, while any value higher than that indicate 
almost perfect agreement according to the (more conservative) interpretation of given by 
Landis & Koch (1977). In the interpretation given by Cicchetti & Sparrow (1981), a value 
of 0.61 or above is interpreted to be excellent agreement. 

 38 Note that for imbalanced data sets it is almost impossible for the MCC to be really close to 1.
 39 Although values of Kappa below zero are possible, they are unlikely in practice. A short article about the 

Cohen’s Kappa Coefficient can be found on the NIH page at https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3900052/. One criticism of the Kappa is that it may lower the rate of agreement excessively.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
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4. Results and discussion
Out of the 7,846 utterances in the corpus, two utterances, prompt 162, uttered by male 
speaker 01 (m01), and prompt 041, uttered by male speaker 11 (m11), had empty 
audio files, yielding 7,844 aligned utterances and totaling 39,888 word tokens (from 
the initial 39,894 in the corpus) for each experimental condition. Of these word tokens, 
11,915 (originally 11,917, minus 2 from prompt 162 above) are monosyllabic function 
word tokens and are not computed together with the other tokens (see discussion in 
section 3). 

Recall from the discussion in section 3 of this paper that the training data sets contain 
4/5 of the data in the WPC and the test data sets contain the remaining 1/5 of the data. 
The results presented below represent the average of the five folds over the training and 
the test sets for each experiment. Since the data shown in Table 7 and in Figures 6 and 7 
show that the results are slightly less optimistic for the test data sets, the subsequent 
part of the analyses is performed over the five folds of the test data sets (avoiding overly 
confident inferences). 

The results as related to binary classification and to the design of the three experiments 
are discussed in detail below, then subsection 4.3 examines what these results mean 
for the syntagmatic and paradigmatic perspectives of stressed and unstressed vowels in 
Brazilian Portuguese sought herein.

4.1. Results for Word Tokens
Table 7 summarizes Accuracy and Error rates as a function of how the aligned 
word tokens compare to the expected word shape given the ground truth described 
in section 3 (Methodology), across the three experiments. From a classification 
perspective, it is expected that accuracy rates will decrease as the complexity of 
the experiment increases (where complexity is defined as the number of options the 
classifier can choose from in a given experiment), and the error rates will increase 
in the same direction, expectations which are both borne out from the data shown 
in the Table.

Analogously, the expectation that there would be only slight differences in performance40 
between the results for the training and the test data sets is confirmed by the data in 
Table 7. These results confirm that the model did not simply memorize the data used 
during the training pass, but rather learned to generalize over the data found in the 
training set, and it can thus be successfully used to evaluate new data. For each of the 

 40 Had the results from the training data sets been very different from the results from the test data sets, we 
would be faced with the issue that the model memorized the data instead of generalizing over (learning 
from) it, and would thus not be effective in evaluating new data. 

Table 7: Accuracy and Error rates for the Training and Test data sets.

Experiment Data Set AR (%) ER (%) CAR (%) CER (%)

Baseline (2n) Training 71.41 4.81 82.63 17.37

Test 69.70 5.19 81.56 18.44

n+1 Training 83.73 1.30 86.17 13.83

Test 82.37 1.48 85.28 14.72

n Training 93.55 2.59 97.41 2.59

Test 92.73 2.83 97.17 2.83
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three experiments the accuracy rates (AR and CAR) are only slightly less optimistic for 
the test data sets, with differences in AR ranging from roughly 0.82 to 1.71 percentage 
points (for experiments 2n and n respectively). Conversely, the error rates (ER and CER), 
increase only very slightly in the test data sets (a difference that ranges from 0.18 to 0.38 
percentage points). 

Figure 6: Overall Accuracy, Error, Partial Matches and Unstressed rates (summarized in Table 7).

Figure 7: Overall Composite Accuracy and Error rates (summarized in Table 7).
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The results presented in Table 7 are illustrated in Figures 6 and 7. Note that for all 
Figures within this section, the scale of the y-axes may change as best suited to provide a 
clearer visualization of the data.

The difference between Accuracy Rate (AR, Figure 6) and Composite Accuracy Rate (CAR, 
Figure 7) across the three experiments illustrates how the classifier expectedly changes 
predictions as it becomes more restricted with respect to where in a word token a vowel 
can be predicted to be stressed. In particular, the decrease in the difference between the 
AR and CAR from experiment 2n to experiment n+1 is noteworthy, because it indicates 
that for a sizable number of aligned tokens, the classifier predicted that both the vowel in 
citation position and some vowel in pretonic position were stressed in experiment 2n, and 
that when the choice was restricted to one vowel per word token in experiment n+1 (and 
also in experiment n), the classifier was significantly more likely to predict that the vowel 
in citation position was stressed (in lieu of predicting that a pretonic vowel was stressed).41

The visible decrease in the Error Rate (ER, or the rate of Mismatches) from experiment 
2n to experiment n+1 reflects the proportion of aligned word tokens where the vowel in 
citation position and also a posttonic vowel were predicted to be stressed (roughly 2/3 of 
the total number of the total Mismatches in experiment 2n) and which were then mostly 
predicted to have a stressed vowel in citation position in experiment n+1.

The increase seen in the Composite Error Rate (CER) from experiment n to the other two 
experiments is a by-product of how the experiments were designed: in experiment n a 
word token where none of the vowels bear stress (the Unstressed option) is not a possibility. 
Given the amount of word tokens classified as Unstressed in experiments n+1 and 2n, it 
follows that a substantial number of those fell under the Matches and Partial Matches 
categories during experiment n, resulting in a visibly lower CER for this experiment.

In experiment 2n, for approximately 73% of the word tokens counted as Partial Matches, 
as mentioned above (a prediction of a stressed vowel in pretonic position) the vowel in 
citation position was also predicted to be stressed. This percentage, along with the decrease 
seen in the rate of Partial Matches from experiment 2n (see Figure 6) to experiment n+1 
(roughly 9%) and to experiment n (approximately 7.4%), illustrates that ¾ of the times 
in which a vowel in pretonic position was predicted to be stressed the vowel in citation 
position was also predicted to be stressed, and that for the most part the prediction of stress 
locus fell back to the vowels in citation position when the choices for stress placement 
were restricted (experiments n and n+1). 

A somewhat unexpected and interesting datum found in Table 7 and in Figure 6 is the 
fairly high rate of word tokens predicted to be completely Unstressed in experiments n+1 
and 2n, totaling roughly 12.5% of the word tokens in the training data set, and about 13.2% 
of the word tokens in the test data set. Note that the rate remains virtually unchanged in 
both experiments, indicating that it is not a byproduct of the experiments’ design, or of 
chance classification, or of imbalances in the data sets, warranting a more detailed analysis.

The first thought that comes to mind is the possibility that the rate of Unstressed word 
tokens may be driven by (content) monosyllabic word tokens, which account for a 
sizeable portion of the corpus data, since for these there are only two choices, the (sole) 
vowel in the word token is either predicted to be stressed or unstressed. A glance at the 
distribution of word tokens predicted to be Unstressed in experiment 2n as a function of 
both the number of syllables and the position of stress as shown in Table 8 below, may 
prove informative.

The data in Table 8 shows that disyllabic and trisyllabic words account for approximately 
2/3 of all the word tokens predicted to be Unstressed, and that penultimately stressed 

 41 Given that the Error Rate goes down from experiment 2n to experiment n+1, and that the rate of Unstressed 
word tokens is constant.
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words make more than 60% of the tokens predicted to be Unstressed. In a complementary 
perspective, Figure 8 below shows the rate of word tokens predicted to be Unstressed with 
respect to the total number of word tokens of that size and stress locus. 

In the Figure, while roughly 14% of (content) monosyllables were predicted to be 
Unstressed, a little more than 16% of the disyllabic and almost 10% of the trisyllabic 
word tokens were also predicted to be so. Furthermore, there are also tetrasyllables 
(4.81% of the total number of tetrasyllabic words) and pentasyllables (3.6% of the total 
number of 5-syllable words) predicted to be Unstressed (and even a very small number 
of hexasyllabic words). Therefore, it seems that the rate of word tokens predicted to be 
Unstressed is not being driven uniquely by monosyllables, or, put differently, that the 
rate of word tokens predicted to be Unstressed is not a byproduct of the size of a word in 
syllables, either.

If the rate of word tokens predicted to be Unstressed is likely not a byproduct of the 
experiments’ design, nor is it particularly associated to the size of the word in syllables, 
then this datum must reflect a phenomenon that is linguistic in nature.42 A few possibilities 
arise: it may be the case that for these particular word tokens the spectral features and 
energy information used here alone do not capture stress information, and that perhaps 
another correlate (such as duration) is used to signal stress more unequivocally in these 
word tokens. It could also be that, for these particular word tokens, stress does not surface 
phonetically. These two hypotheses however, as phrased here, seem somewhat unlikely, 

 42 Ad hoc bottom-up measurements of various acoustic correlates of the vowels that occupy citation position, 
as well as analyses of the word type (content X function), the grammatical category, and the type of stressed 
syllable (open or closed syllable, oral or nasal monophthong, oral or nasal diphthong) in the word tokens 
predicted to be Unstressed are being conducted as this paper is written, but the results fall beyond the scope 
of the present study.

Table 8: Word tokens predicted to be Unstressed per number of syllables and stress position.

Num Syll Ultimate (%) Penultimate (%) Antepenultimate (%) Grand Total (%)

1 12.90 N.A. N.A. 12.90

2 27.75 39.84 N.A. 67.58

3 2.94 12.04 0.57 15.55

4 0.51 2.54 0.05 3.10

5 – 0.81 0.00 0.81

6 – 0.05 – 0.05

Grand Total 44.10 55.28 0.62 100

Figure 8: Distribution of Unstressed tokens as a function of the number of syllables and stress 
position.
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since, first, the results so far have shown that spectral features and energy information 
capture stress fairly robustly, and second, it seems somewhat odd for stress to not surface 
phonetically in some random fashion. An alternative version for the former hypotheses 
would be that there is some phonological or prosodic process at work in these word tokens 
and that, as a consequence, either stress does not surface phonetically, or it is encoded 
using acoustic correlates that are not captured by the present model (in which case, the 
change in acoustic correlate in and of itself could potentially signal the phenomenon at 
hand). With respect to prosody, one contender that comes to mind is the position that 
the Unstressed word token occupies in the utterance. Figure 9 illustrates this distribution, 
showing the averages of Unstressed word tokens for each position of a given utterance. 
The labels closest to the X-axis represent the offset of the word within the utterance and 
the numbers below those represent the size of the utterance in number of words (if a 
position is missing for a given utterance size it means that all words in that position for all 
utterances of that size are monosyllabic function words). For each utterance size plotted 
in the graph (1-word to 10-word long), there are two or more distinct prompt sentences. 

In the Figure above there is a trend whereby the rate of word tokens predicted to be 
Unstressed is visibly lower at the end of the utterance and is consistently higher towards 
mid-utterance position, which seems to indicate that word tokens are more likely to be 
predicted to be Unstressed in the prosodically weak positions of the utterance, and less 
likely so in positions of nuclear accent.43 Note also that in the longer utterances (e.g., 
8, 9, and 10 words), the pattern seems to repeat itself, in what could be the effects of 
two Intonational Phrases. Only a fully-fledged analysis of the trends seen in Figure 9 
however,44 would shed light on the true crux of the matter, which is, is stress in these 
Unstressed word tokens more phonological in nature (i.e., it does not surface phonetically), 
or does stress surface through different acoustic correlates, or combinations thereof, in the 
weaker positions of the utterance?

Since the results so far have shown that the outcomes are consistently more conservative 
(even if just slightly so) for the test data sets, the analyses presented in the remainder 
of this subsection will subsume these results only. Figure 10 presents the results for 
monosyllables in the corpus, summarized into two classes, that of function and of content 
words (results from experiment 2n). Although there is a large body of literature describing 
that monosyllabic function words, but not monosyllabic content words, are destressed 
cross-linguistically, there is no work in BP, to the best of this author’s knowledge, that 

 43 See, for example, De Moraes (2007) for a summary of intonational patterns in BP.
 44 A detailed analysis would have to look separately at the prompts in the WPC, controlling the predicted 

Unstressed tokens for stress locus, grammatical category, compound status number of Intonational Phrases in 
the utterance, type of sentence, to name a few. Such analysis would ideally add instrumental measurements 
of the acoustic correlates known to subsume stress in the word tokens of interest. This analysis is being 
conducted in work parallel to the present study.

Figure 9: Distribution of Unstressed word tokens as a function of the position of the word in the 
utterance.



Harmath-de Lemos: Detecting word-level stress in continuous speech Art. 3, page 29 of 43

shows this experimentally. The results fit these accounts well, as approximately 86% of 
the monosyllabic content word tokens were predicted to be stressed, but only around 
35% of the function words fell in that prediction pattern. Note that these results are in 
agreement with phonological accounts whereby function words may be incorporated into 
adjacent phonological words.

Lastly, Figure 11 illustrates the breakdown of the results by stress locus, across all three 
experiments. Monosyllabic content words were not included in the plots, so to show all 
stress positions without the bias these words may introduce for ultimate stress.

While the results for experiment n and n+1 show a trend whereby the Accuracy Rate 
increases the farther the stress locus falls from the right edge of the word, no clear 
pattern can be inferred form the results for experiment 2n. From this perspective it would 
be interesting to perform instrumental measurements of the acoustic correlates of the 
stressed vowels to see if a pattern indeed emerges with respect to how systematically 
these can tell apart the stressed vowels in the different positions of the word, in the 
lines of the word of Delgado Martins (1986, apud Magalhães, 2016) for EP, where it 
was found that duration and energy can be established instrumentally for ultimate and 
antepenultimate stress, but less systematically so for penultimate stress. Importantly, 
these results illustrate that the rate of word tokens predicted to have exactly the same 
shape as the citation word is very high across experimental conditions, for all three 
positions of stress. 

4.2. The Classifier’s Discriminatory Skills
While the data discussed so far outlines how reliably stressed vowels are distinguished 
from the surrounding vowels in a given word token, they do not provide a detailed picture 
of discriminatory capacity of the model, or of how well it distinguishes between stressed 

Figure 10: Results (Test data set of experiment 2n) for function and content monosyllabic words.
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and unstressed vowels given the ground truth. To do so, the data are summarized in 
confusion matrices and evaluated according to the metrics discussed in the Data Analysis 
subsection of this paper.

Table 9 shows that, analogously to the metrics discussed in the previous paragraphs, 
here too, for each of the three experiments, the rate of change between the metrics 
calculated for the training data sets and those calculated for the test data sets in each 
experiment is very small, not surpassing 2 percentage points for an individual metric. 
Figure 12 illustrates the results graphically.

The accuracy rates show that for all vowels predicted to be stressed and for all vowels 
predicted to be unstressed, the rate of truly stressed and truly unstressed vowels is very 
high across experiments and data sets (range 86%–94%). This means that the spectral 
features and energy information encoded in the MFCCs (modelled in HMM-GMMs) allow 
for the distinction between a stressed vowel and an unstressed vowel to be made with 
fairly high accuracy in BP. 

The values for Sensitivity and Specificity indicate that, for all experiments and all data 
sets, the classifier is slightly better at correctly predicting that a vowel is unstressed when 
that vowel is expected to be unstressed, than it is at predicting that a vowel is stressed 
when that vowel is expected to be so. In an oversimplified way, these values indicate that, 
as represented by spectral and energy information encoded in MFCCs, unstressed vowels 
are slightly more likely to fit the model of an unstressed vowel than stressed vowels 
are likely to fit the model of a stressed vowel. Sensitivity is highest in experiment n and 
Specificity is highest in experiment n+1. Computationally this is a meaningful piece of 
information because it would help to decide which experiment is best suited if one is more 
interested in finding stressed or unstressed vowels in a speech corpus. 

The results for Precision in the test data set show that when the classifier makes a positive 
prediction (a stressed vowel prediction), it is right 82% of the times in experiment 2n, 94% 
of the times in experiment n, and 96% of the times in experiment n+1. Precision is an 

Figure 11: Distribution of aligned word tokens as a function of stress position.
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important metric in as much as it illustrates the performance of the test: it could be, for 
example, that high values of Sensitivity were achieved because the classifier only makes 
positive predictions, and thus a considerable number of them are bound to be right.

The F1-scores provide an alternative measure of the classifier’s accuracy, a compromise 
between Precision and Sensitivity. The F1-scores45 shown in Table 9 are almost as high as 
Accuracy for all three experiments, indicating that there is good balance between Precision 
and Sensitivity.

Recall from the Methodology section that the MCC (–1 ⩽ MCC ⩽ 1) measures the strength 
of correlation between the predictions and the ground truth taking into consideration 
the proportion of each class within the confusion matrix (TP, TN, FP, FN). The results 
achieved for the MCCs indicate a very strong correlation between predictions and ground 
truth across experiments and data sets. Put differently, the strength of correlation we 
see between predictions and the ground truth is not affected by the fact that language is 
imbalanced (the number of expected true negatives is much higher than the number of 
expected true positives). 

Table 10 shows the Cohen’s Kappa Coefficients (Kappa), which represent the chance-
corrected strength of the agreement between predictions and the ground truth. For each 
Kappa calculated, for the standard errors (SE) listed in the Table, there is a 95% chance 
that they would fall within the confidence intervals also shown in the Table. The Kappas 
for all experiments and all data sets are considered substantial (from 0.61 to 08) to 
almost perfect (0.81 to 1) in the interpretation given by Landis & Koch (1977) and are all 
considered excellent in the view of Cicchetti & Sparrow (1981).

 45 Note that although the F1-score is a measure of accuracy, it does not take into account true negatives, but 
Accuracy does.

Table 9: Evaluation metrics for the classifier's overall discriminatory skills.

Experiment Data Set Accuracy Sensitivity Specificity Precision F1-Score MCC

2n (Baseline) Training 0.86 0.86 0.86 0.83 0.84 0.71

Test 0.85 0.85 0.85 0.82 0.83 0.69

n+1 Training 0.91 0.84 0.97 0.96 0.89 0.82

Test 0.90 0.82 0.96 0.95 0.88 0.80

n Training 0.94 0.94 0.95 0.94 0.94 0.88

Test 0.93 0.93 0.94 0.93 0.93 0.87

Figure 12: Results for the classifier's overall discriminatory skills.
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The results for MCCs and Kappas for all experiments and all data sets help to ascertain 
that the strength of the agreement between predictions and the ground truth is neither a 
product of an imbalanced data set, nor the result of chance agreement.

In the following paragraphs, analogously to what was done in the previous subsection, 
a breakdown of the metrics calculated from the confusion matrices is detailed for the 
test data sets only. Figure 13 shows the metrics as a function of stress locus in a word. 
Monosyllabic content words were not included in the computations here to avoid bias 
on the metrics calculated for ultimate stress words (since False Positives (FP) and True 
Negatives (TN) will never occur in a monosyllabic word).

Recall from the results discussed in the previous subsection that there seemed to be 
a trend in experiments n and n+1 whereby AR showed that predictions became more 
accurate as the stress locus got farther from the right edge of the word, but that no 
pattern in this respect could be inferred from the results in experiment 2n. The graphs in 
the two first rows of Figure 13 show data that appear to corroborate this trend: across all 
experiments, all of the metrics shown in the graphs improve as the locus of stress moves 
away from the right edge of the word. In the lines of work like that of Gahl, Yao & Johnson 
(2012)—who showed that in (English) spontaneous speech words that are infrequent 
and have low phonological neighborhood density are more carefully articulated46—one 
explanation for this asymmetry could be that penultimate and antepenultimate words in 
the WPC are more carefully articulated,47 and as a consequence the vowels in them are 
better exemplars of both stressed and unstressed vowels, which results in more accurate 
predictions. An alternative explanation would be that spectral features and energy 
information capture stress more systematically as it falls farther from the right edge of 
the word, and instrumental measurements of other correlates of stress may or may not 
reproduce such asymmetry. Work for European Portuguese (EP) has shown an effect in 
these lines, in which duration and energy were found to be the most reliable correlates of 
stress in the language, but were instrumentally less systematic so for penultimate words 
(Delgado Martins 1986, apud Magalhães 2016) than for ultimate and antepenultimate 
words. It is worth noticing that, while the asymmetry between ultimate and penultimate 
words stems from a data set that contains 9,771 word tokens and 145 different word 
shapes in the former category, and 17,837 word tokens and 345 different word shapes of 
the latter category, in the case of antepenultimate words, only 365 word tokens and 11 
word shapes determined the results here. Therefore, additional work using a data set that 

 46 Where the number of phonological neighbors is the number of words in the language that differ in a single 
phoneme, by means of substitution, addition, or deletion and where articulatory effort is measured through 
vowel dispersion.

 47 The idea being that words that bear penultimate and antepenultimate stress are inherently (and progressively) 
longer, and maybe also less likely to have a large number of phonological neighbors.

Table 10: Cohen’s Kappa Coefficients for the Training and Test data sets.

Experiment Data Set Kappa

Baseline (2n) Training 0.7130, SE = 0.003, 95\% conf int.: 0.706 to 0.719 

Test 0.6930, SE = 0.006, 95\% conf int.: 0.680 to 0.706 

n+1 Training 0.8170, SE = 0.003, 95\% conf int.: 0.811 to 0.822 

Test 0.7980, SE = 0.005, 95\% conf int.: 0.787 to 0.809 

n Training 0.8830, SE = 0.002, 95\% conf int.: 0.879 to 0.887 

Test 0.8680, SE = 0.004, 95\% conf int.: 0.86 to 0.877 
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contains a larger number of antepenultimate word tokens and a greater variety of word 
shapes should shed additional light on this matter.

While Sensitivity and Specificity in Figure 13 mostly follow the general patterns seen in 
the overall results (Figure 12 earlier in the text), in experiment 2n, for antepenultimate 
words only, the rate of stressed vowels correctly identified as such among all vowels 
expected to be stressed becomes higher than the rate of unstressed vowels correctly 
identified as unstressed among all the truly unstressed vowels. This pattern likely stems 
from the design of the experiment, which allows vowels in all positions of a given word to 
be predicted as stressed. Indeed, in looking at the graphs in the second row for the same 
experiment, as Sensitivity increases for the antepenultimate words, Precision decreases, 
indicating that the ratio of correct positive predictions for all positive predictions made 
became lower. This trend is also visible on the F1-score for that category in the same 
experiment.

The F1-scores show that the balance between Precision and Sensitivity improves (F1-score 
plot is closer to Accuracy plot) for antepenultimate words in relation to penultimate and to 
ultimate words. The strength of the correlation between predictions and the ground truth, 
given by the MCCs, is also highest for antepenultimate words, as is the chance-corrected 
agreement between predictions and ground truth shown in yellow here.48 The latter two 
metrics confirm, for all three stress loci, that the predictions are not a product of the 
imbalance in the class sizes, nor a result of chance classification.

 48 Because there are fewer antepenultimate word tokens in the data set, the confidence intervals for the 
antepenultimate Kappas are wider than the confidence intervals for the other stress loci.

Figure 13: Discriminatory skills as a function of stress locus.
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On the second row of Figure 13, the graph on the right adds a plot for the Negative 
Predictive Value, the rate of correctly made predictions of unstressed vowels for all the 
unstressed vowel predictions made, which is a tradeoff with Specificity, a measure of the 
tests’ performances in finding relevant results for unstressed vowels. The results for NPV 
show that the rate of relevant negative predictions (an unstressed prediction) increases as 
citation stress locus falls farther from the right edge of the word in all experiments. NPV 
is highest for all stress loci in the least complex experiment (n) and is very close in value 
for the more complex experimental conditions (n+1 and 2n). The values for Precision 
show that there is a less clear trend in what concerns finding relevant positive results for 
the different stress loci, as the plot slightly dips for penultimate words before rising for 
antepenultimate words.

Because the various measures of accuracy presented here are very close in values, the 
differences are often harder to visualize, so the last graph in Figure 13 shows the False 
Positive Rate (FPR), the False Negative Rate (FNR) and the False Discovery Rate (FDR), a 
complementary view with respect to the accuracy metrics where changes in value are 
easier to spot. The values for FPR show that the rate of vowels incorrectly predicted to be 
stressed among all vowels expected to be unstressed is lower the farther the stress locus 
gets from the right edge of the word, for all experiments, meaning it is less likely that we 
find an incorrect prediction in antepenultimate then in penultimate and in ultimate words 
when the vowel is expected to be unstressed. The trend for FNR follows the same path of 
FPR, but in a much sharper fashion, where it is considerably less likely to find incorrect 
predictions among the vowels expected to be stressed in antepenultimate words. 

Lastly, we move on to look at unstressed vowels separately in pre-tonic and in posttonic 
positions of the word. Since asymmetries between these positions have been previously 
reported in the literature (e.g., Câmara Jr. 1970; Major 1985) of Brazilian Portuguese, an 
analysis of the results obtained herein could potentially shed some additional light on the 
matter. Figure 14 summarizes the results for Specificity and for False Positive Rate for pre- 
and posttonic vowels. In the graph, recall that there are no posttonic positions in ultimate 
words and no pretonic positions in monosyllabic ultimate, disyllabic penultimate, and 
trisyllabic antepenultimate words.

The results shown in Figure 14 present a fairly clear trend in which, for all experiments, 
and for all sizes of words within all stress loci, the rate of vowels correctly identified as 
unstressed among all the vowels expected to be unstressed (given by Specificity) is higher 
for posttonic positions. In other words, it is more likely for unstressed vowels in posttonic 
positions to be identified as such, than it is for unstressed vowels in pretonic positions of 
the word. The results from experiment 2n are the most telling, since in this experimental 
condition there are no restrictions to predicting that more than one vowel in the same 
word token is stressed. Indeed, the data indicate a clearer and sharper separation of pre- 
and posttonic vowels in this experiment. Showing the converse perspective, the graphs 
on the right side of the figure illustrate that the rate of False Positives (FPR) is higher 
for pretonic vowels in all experiments and word sizes within the three stress loci. The 
difference is again sharper in experiment 2n. Note that the asymmetry persists when there 
is imbalance between the number of pretonic and posttonic vowels in a word. 

The question of whether the values of Specificity and Sensitivity in pretonic vowels can 
help to shed light on the nature and behavior of secondary stress in BP, while certainly a 
worthy one, falls beside the scope of the present study.49 

 49 An analysis of the findings related to this matter is underway.



Harmath-de Lemos: Detecting word-level stress in continuous speech Art. 3, page 35 of 43

4.3. Discussion Synopsis
The results of the three experiments performed for the present study were discussed in this 
section. Results were averaged over the five folds of the experiments and then summarized 
and analyzed from two distinct and complementary perspectives, which provide insights 
on the syntagmatic and the paradigmatic nature of stressed and unstressed vowels as 
captured by a compressed representation of the speech signal that subsumes spectral 
features and energy information (MFCCs). The overall results for all metrics in both 
analyses, were, as anticipated, slightly less optimistic for the test data sets than for the 
training data sets, prompting the more detailed analyses to be summarized for the test 
data sets only. 

From a syntagmatic perspective, the results have shown robustly that stressed vowels 
distinguish themselves from the surrounding vowels, even in a complex classification 
problem (experiment 2n), as shown by the Accuracy Rate (AR, or the rate of word tokens 
predicted to have the exact same shape of the citation form for that word) of 69.7% of the 
word tokens (19,498 in all). In the less complex experiments, AR approximates 93%. For 
experiments n and n+1, and only slightly so for experiment 2n, this syntagmatic effect is 
more noticeable the farther the stress locus gets from the right edge of the word—the rate 
of antepenultimate words that fits perfectly in the citation form of the word is larger than 
the rate of penultimate, than the rate of ultimate words.

Still from a syntagmatic perspective, the rate of tokens predicted to be completely 
Unstressed, a virtually steady 13% of all the word tokens in the corpus, in both experiment 
2n and n+1, came as somewhat of a surprise. Having established that this rate is neither 
a byproduct of the design of the experiments, nor is it driven by monosyllabic words, a 
couple of options arise to explain these findings: one possibility is that, for a number of 

Figure 14: Discriminatory skills for pretonic and posttonic vowels.
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word tokens, stress cannot be captured using representations of the speech signal that 
subsume spectral features and energy information. Another possibility is that, in these 
tokens, stress is more of a phonological property, not necessarily surfacing phonetically. 
Independently of which of these two possibilities are correct, perhaps the crucial matter 
lies in trying to understand whether there is some phonological or prosodic process (or 
processes) at work in these Unstressed word tokens. In an attempt to do some inception 
work to answer this question, a brief analysis of Unstressed word tokens as a function of the 
position they occupy in the utterance was presented. This analysis showed a fairly clear 
trend in which Unstressed tokens are more likely to appear in the prosodically weaker 
positions of the utterance, for the different utterance sizes (in number of words) in the 
corpus. A much more detailed analysis is needed though, in trying to determine whether 
stress is more phonological in nature for these tokens, or whether, in these Unstressed 
tokens, stress is better captured through different acoustic correlates (in which case one 
might ask what the reason for such change would be: could it be to signal some other 
prosodic aspect of the utterance?).

A brief analysis of function and content monosyllabic words confirmed the trend widely 
reported in the literature cross-linguistically, which is that function monosyllabic words 
are generally destressed (only about 35% of them predicted to be stressed in experiment 
2n), but not content monosyllabic words (approximately 86% of which were predicted to 
be stressed in experiment 2n). While these results are expected given the vast literature 
ascertaining so, there are no experimental studies looking at these two classes in BP, to 
the best of this author’s knowledge.

From a paradigmatic perspective the results proved to be yet more robust, with high 
values of Accuracy, Sensitivity and Specificity in all three experiments for all stress loci. These 
results revealed that stressed and unstressed vowels, as captured by MFCC representations 
of the signal and modelled in the HMM-GMM framework, are systematically different 
from one another. The values for the Matthew’s Correlation Coefficients show that the 
correlation between predictions and the ground truth is still very strong after taking 
the imbalances in the data set into account, and the Cohen’s Kappa Coefficients indicated 
a very strong to almost perfect chance-corrected correlation between predictions and 
ground truth. 

Noteworthy, also from a paradigmatic perspective, is the fact that there is a clearer 
trend in which stressed vowels and unstressed vowels appear to be more distinctly so 
as the locus of stress in the citation form of the word moves away from its right edge. 
Differently put, both stressed and unstressed vowels are more likely to be accurately 
predicted as such in antepenultimate words then they are in penultimate words, then they 
are in ultimate words. A parallel asymmetry was shown to exist for penultimate words 
in European Portuguese in the work of Delgado Martins (1986, apud Magalhães 2016). 
Whether or not these asymmetries are rooted in cognitive processes, in line with work 
such as Gahl, Yao & Johnson (2012), and whether they hold after studies on larger data 
sets establish instrumentally the acoustic correlates of stress in point, are some of the 
questions that remain open.

Lastly, an analysis of Specificity and of False Positive Rate (FPR) for pre- and posttonic 
vowels separately revealed an asymmetry between these positions in the word, as 
previously reported in the literature for BP (e.g., Major 1985; Câmara Jr. 1970). For all 
experiments and all word sizes within all stress loci, posttonic vowels are more likely to 
be predicted to be unstressed than pretonic vowels are so. The effect holds despite the 
imbalance in the number of pre- and posttonic vowels in words of different sizes and 
stress locus. 
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Several metrics in both analyses—including the rate of Unstressed word tokens, the 
change in rates of Partial Matches and Error, Accuracy rates for monosyllabic content word 
tokens, the progression of Precision, Sensitivity and Specificity, among others—indicated 
inter-experiment agreement where expected. Conversely, other metrics confirmed 
differences where they would be expected, given the design of each experiment—e.g., 
a perfect agreement for monosyllabic content words in experiment n, lower word token 
Accuracy Rate (perfect matches) in experiment 2n, and Accuracy (from the confusion 
matrix) of 1 for monosyllabic content words in experiment n, among others.

5. Final Thoughts
This study examined primary word-level stress in continuous speech using the LDC West 
Point Speech corpus (Morgan et al. 2008) as dataset and the ASR toolkit Kaldi (Povey et 
al. 2011). Specifically, I investigated whether stressed vowels are systematically different 
from the vowels that surround them (a syntagmatic comparison), and whether stressed 
vowels are systematically different from unstressed vowels (a paradigmatic comparison) 
when captured by acoustic features of the speech signal (MFCCs, HMM-GMMs) which are 
known to subsume spectral features and energy information, but not information about 
the time-domain (duration) or the source characteristics (F0) of the signal. This was done 
by building a linguistically informed list of phones and a phonetic dictionary modelled for 
explicit pronunciation, which were used to train an acoustic model of Brazilian Portuguese. 
The model was then tested in three increasingly complex classification experiments, with 
the purpose of measuring the strength of agreement between the predictions made and 
ground truth defined by the citation form of each word. 

The results obtained showed that stress is robustly realized in most content word tokens 
in all three experimental conditions and for all three loci of citation stress, across speakers 
and across genders. These results indicate that spectral features and energy information 
can systematically capture the differences between stressed vowels and the vowels that 
surround them in a given word token, and also the differences between stressed and 
unstressed vowels as two classes. This is a departure from previous literature (e.g., 
Barbosa, Eriksson & Åkesson 2013; Major 1985; Massini 1991), which showed that only 
duration robustly distinguishes stressed vowels from unstressed vowels in BP.50 

In the experimental conditions that allowed for such a choice (condition 2n and condition 
n+1), a non-negligible rate of word tokens were predicted to be completely Unstressed 
(roughly 13% of all word tokens). While it is possible that stress cannot be captured using 
representations of the speech signal that subsume spectral features and energy information 
for these particular word tokens (but maybe another acoustic correlate of stress could), 
one should also consider the likelihood that in these tokens stress is more of a phonological 
property, thus not necessarily surfacing phonetically. Importantly, a crucial matter lies 
in trying to understand whether there are other phonological or prosodic process(es) at 
work in these Unstressed word tokens. A preliminary analysis of Unstressed word tokens 
as a function of their position in the utterance (1 ⩽ utterance size (words) ⩽ 10) indicates 
a trend whereby word tokens are more likely predicted to be Unstressed in prosodically 
weaker positions of the utterance. As discussed in the Synopsis section above however, 

 50 I thank an anonymous referee for pointing out that in the work of Arantes, Lima & Barbosa (2012: 17) the 
authors mention that vowels in stressed syllables have higher mean spectral emphasis than those in other 
positions of the word, which could thus indicate that it is a correlate of primary word stress. Later work by 
Barbosa, Eriksson & Åkesson (2013) reported that only duration was the most consistent correlate of stress 
in BP.
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much remains to be done in order to sketch a more comprehensive picture of the possible 
interaction(s) between phonetic stress and the position of the word in the utterance. 

The results and the metrics calculated to evaluate them, revealed two asymmetries with 
respect to stress in BP. The first asymmetry regards pre- and posttonic vowels (or syllables) 
and has been reported in previous literature on stress in BP (e.g., Câmara Jr. 1970; Major 
1985), but was not corroborated by the results from previous experimental work (e.g., 
Barbosa, Eriksson & Åkesson 2013). The results presented here showed a trend, for all 
experimental conditions and for all loci of stress, whereby posttonic vowels are more 
likely to be predicted to be unstressed than vowels in pretonic positions of the word 
token. This finding presents evidence that favors the assumption that posttonic vowels 
are unstressed. These results also indicate that pretonic vowels are more likely to be more 
similar to stressed vowels (since they are more likely to be predicted to be stressed than 
posttonic vowels are), raising further questions about the nature secondary stress in BP.

The second asymmetry uncovered in the results of this study regards stress locus. Stressed 
and unstressed vowels are more likely to be correctly predicted as such in antepenultimate 
words, followed by penultimate words, followed by ultimate words. While further work 
is needed to ascertain this finding, both by experimenting with data sets that contain 
larger number of word shapes (as opposed to the 516 word shapes in this study), and 
by performing further instrumental measurements of the spectral features and energy 
information of the vowels that occupy the stress position in the citation form of the word, 
it is not unheard of that a certain acoustic correlate (or a set of) is more systematic in 
expressing stress in some positions of the word than it is in others, as discussed in the 
Results section. 

One of the strengths of the present study lies in the number of speakers included 
(speakers = 99, fairly balanced for gender), in the number of repetitions of each sentence 
found in the corpus’ prompts (22 ⩽ repetitions ⩽ 98, for a total of 7,844 utterances and 
of 39,894 word tokens), and also in the number of word shapes under scrutiny, when 
compared to traditional phonetic studies. Methodologically, the study is designed to 
explore boundaries in the use of machine learning and in top-down approaches to conduct 
phonetic and phonological studies. It innovates in adopting a data analysis method 
that evaluates stressed and unstressed vowels paradigmatically while also emulating a 
syntagmatic comparison without performing direct instrumental measurements. 

The general approach instantiated here is to put linguistic research on prosody and 
other aspects of surface phonological form into contact with corpus data using a robust, 
probabilistic model mapping the linguistic surface form to the signal. There is the potential 
to apply this methodology to other aspects of the Brazilian Portuguese prosodic system, 
and to segmental phonology. Pending corroboration of the results reported herein with 
results of future studies performed in speech corpora containing a greater diversity of 
word shapes, the method developed for this study illustrates what can be accomplished 
in speech corpus phonetic/phonology using a relatively small amount of data and 
computationally cheaper models, such as HMM-GMMs (as opposed to various Neural 
Network alternatives) and context independent monophones.

Further analyses of the results herein reported are currently being performed to explore 
how they relate to syllable weight and grammatical category, in the interest of shedding 
further light on the phonetics/phonology interface of stress in Portuguese. Since it has 
been shown that phonological weight distinctions are correlated with phonetic duration 
(see, for example, Broselow, Chen & Huffman 1997) and with the total energy of the 
syllable rhyme (see Gordon 2002; 2006), it becomes interesting to explore whether the 
results presented herein echo the (QS) stress system of non-verbs as described in the 
various accounts for stress placement in Portuguese discussed in section 2.1 herein.
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While the study’s motivations are rooted in linguistic research, it also has applications 
in speech recognition technology. For instance, the approach defined here can 
straightforwardly be used to add stress information to a speech recognition phonetic 
lexicon that lacks stress information.51

The analyses presented throughout the paper were detailed but by no means exhaustive, 
given the nature and complexity of stress as a variable. As these final thoughts are being 
written ad hoc measurements are being taken to try and better understand the nature 
of the Unstressed word tokens. An analysis of classification for pretonic vowels is also 
underway, in order to delineate their behavior in the corpus. Analyses of the results as a 
function of vowel quality, and as a function of the phones neighboring the vowels in stress 
citation position of a given word can also be potentially informative.

A reservation about the study computationally speaking is that it uses a speech corpus 
with a few hundred word shapes. Although this is a higher than usual number of word 
shapes for a phonetic study, in a computational experiment, it is possible that the 
performance of the model in predicting stress to some extent takes advantage of this. 
Thus, an important topic for further research is to test the model on corpus data with a 
much larger set of word shapes. A number of the trends identified throughout section 4 
(Results and Discussion), including the more robust ones, will ideally be reproduced in 
studies with larger corpora and a greater number of word shapes, especially trisyllables 
and longer. Future studies should also investigate the effects that the incorporation of 
pitch information and the use of different modeling (such as DNN-HMMs) and adaptation 
techniques (such as fMLL) would have on the final results.52
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